Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

3. Structures of Coal, Kerogen, and Asphaltenes

verfasst von : Alan K. Burnham

Erschienen in: Global Chemical Kinetics of Fossil Fuels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hypothetical molecular structures of humic coal, sapropelic kerogens, and asphaltenes are described, including how they change with maturity and how they have been refined over the past 75 years with advances in characterization methods. Due to their importance for modeling oil and gas expulsion, Hildebrand solubility theory and results are outlined. The relationship between aromaticity and coke yield is described. A link is made also between the fundamental mechanism of kerogen decomposition and the types of appropriate global chemical kinetic models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Fuchs, A.G. Sandhoff, Theory of coal pyrolysis. Ind. Eng. Chem. 34, 567–571 (1942)CrossRef W. Fuchs, A.G. Sandhoff, Theory of coal pyrolysis. Ind. Eng. Chem. 34, 567–571 (1942)CrossRef
2.
Zurück zum Zitat D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 25, pp. 777–810 D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 25, pp. 777–810
3.
Zurück zum Zitat T. Green, J. Kovac, D. Brenner, J.W. Larsen, The macromolecular structure of coal,ed. by R.A. Meyers. Coal Structure (Academic Press, 1982), Chap. 6, pp. 199–282 T. Green, J. Kovac, D. Brenner, J.W. Larsen, The macromolecular structure of coal,ed. by R.A. Meyers. Coal Structure (Academic Press, 1982), Chap. 6, pp. 199–282
4.
Zurück zum Zitat J.P. Mathews, A.L. Chaffee, The molecular representations of coal—a review. Fuel 96, 1–14 (2012)CrossRef J.P. Mathews, A.L. Chaffee, The molecular representations of coal—a review. Fuel 96, 1–14 (2012)CrossRef
5.
Zurück zum Zitat J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, The utility of coal molecular models. Fuel Proc. Technol. 92, 718–728 (2011)CrossRef J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, The utility of coal molecular models. Fuel Proc. Technol. 92, 718–728 (2011)CrossRef
6.
Zurück zum Zitat C.L. Spiro, P.G. Kosky, Space-filling models for coal. 2. Extension to coals of various ranks. Fuel 61, 1080–1084 (1982)CrossRef C.L. Spiro, P.G. Kosky, Space-filling models for coal. 2. Extension to coals of various ranks. Fuel 61, 1080–1084 (1982)CrossRef
7.
Zurück zum Zitat J.H. Shinn, From coal to single-stage and two-stage products: a reactive model of coal structure. Fuel 63, 1187–1196 (1984)CrossRef J.H. Shinn, From coal to single-stage and two-stage products: a reactive model of coal structure. Fuel 63, 1187–1196 (1984)CrossRef
8.
Zurück zum Zitat T. Kabe, A. Ishihara, E.-W. Qian, I.P. Sutrisna, Y. Kabe, Coal and coal-related compounds, vol 150 (Structures, reactivity and catalytic reactions, Elsevier, 2004) T. Kabe, A. Ishihara, E.-W. Qian, I.P. Sutrisna, Y. Kabe, Coal and coal-related compounds, vol 150 (Structures, reactivity and catalytic reactions, Elsevier, 2004)
9.
Zurück zum Zitat T. Aida, Solvent swelling dynamics as a probe of coal structure. J. Fuel Soc. Jpn. 70, 820–826 (1991)CrossRef T. Aida, Solvent swelling dynamics as a probe of coal structure. J. Fuel Soc. Jpn. 70, 820–826 (1991)CrossRef
10.
Zurück zum Zitat G.A. Carson, Computer simulation of the molecular structure of bituminous coal. Energy Fuels 6, 771–778 (1992)CrossRef G.A. Carson, Computer simulation of the molecular structure of bituminous coal. Energy Fuels 6, 771–778 (1992)CrossRef
11.
Zurück zum Zitat F. Castro-Marcano, V.V. Lobodin, R.P. Rodgers, A.M. McKenna, A.G. Marshall, J.P. Mathews, A molecular model for illinois no. 6 argonne premium coal moving toward capturing the continuum structure. Fuel 95, 35–49 (2012). F. Castro-Marcano, V.V. Lobodin, R.P. Rodgers, A.M. McKenna, A.G. Marshall, J.P. Mathews, A molecular model for illinois no. 6 argonne premium coal moving toward capturing the continuum structure. Fuel 95, 35–49 (2012).
12.
Zurück zum Zitat N.A. Peppas, L.M. Lucht, Macromolecular structure of coals. 1. The organic phase of bituminous coals as a macromolecular network. Chem. Eng. Commun. 30, 291–310 (1984)CrossRef N.A. Peppas, L.M. Lucht, Macromolecular structure of coals. 1. The organic phase of bituminous coals as a macromolecular network. Chem. Eng. Commun. 30, 291–310 (1984)CrossRef
13.
Zurück zum Zitat J.W. Larsen, T.K. Green, J. Kovac, The nature of the macromolecular network structure of bituminous coals. J. Org. Chem. 50, 4729–4735 (1985)CrossRef J.W. Larsen, T.K. Green, J. Kovac, The nature of the macromolecular network structure of bituminous coals. J. Org. Chem. 50, 4729–4735 (1985)CrossRef
14.
Zurück zum Zitat E.M. Suuberg, D. Lee, J.W. Larsen, Temperature dependence of crosslinking processes in pyrolysing coals. Fuel 64, 1668–1671 (1985)CrossRef E.M. Suuberg, D. Lee, J.W. Larsen, Temperature dependence of crosslinking processes in pyrolysing coals. Fuel 64, 1668–1671 (1985)CrossRef
15.
Zurück zum Zitat D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 19, pp. 549–604 D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 19, pp. 549–604
16.
Zurück zum Zitat J.-L. Faulon, Calculating the number-averaged molecular weight (M0) of aromatic and hydroaromatic clusters in coal using rubber elasticity theory. Energy Fuels 8, 1020–1023 (1994)CrossRef J.-L. Faulon, Calculating the number-averaged molecular weight (M0) of aromatic and hydroaromatic clusters in coal using rubber elasticity theory. Energy Fuels 8, 1020–1023 (1994)CrossRef
17.
Zurück zum Zitat Y. Otake, E.M. Suuberg, Solvent swelling rates of low rank coals and implications regarding their structure. Fuel 77, 901–904 (1998)CrossRef Y. Otake, E.M. Suuberg, Solvent swelling rates of low rank coals and implications regarding their structure. Fuel 77, 901–904 (1998)CrossRef
18.
Zurück zum Zitat J.P. Mathews, C. Burgess-Clifford, P. Painter, Interactions of Illinois No. 6 bituminous coal with solvents: a review of solvent swelling and extraction literature. Energy Fuels 29, 1279–1294 (2015)CrossRef J.P. Mathews, C. Burgess-Clifford, P. Painter, Interactions of Illinois No. 6 bituminous coal with solvents: a review of solvent swelling and extraction literature. Energy Fuels 29, 1279–1294 (2015)CrossRef
19.
Zurück zum Zitat A.F.M. Barton, CRC Handbook of Solubility Parameters and other Cohesive Parameters (CRC Press, 1983) A.F.M. Barton, CRC Handbook of Solubility Parameters and other Cohesive Parameters (CRC Press, 1983)
20.
Zurück zum Zitat M. Vandenbroucke, C. Largeau, Kerogen origin, evolution and structure. Org. Geochem. 38, 719–833 (2007)CrossRef M. Vandenbroucke, C. Largeau, Kerogen origin, evolution and structure. Org. Geochem. 38, 719–833 (2007)CrossRef
21.
Zurück zum Zitat F. Behar, M. Vandenbroucke, Chemical modelling of kerogens. Org. Geochem. 11, 15–24 (1987)CrossRef F. Behar, M. Vandenbroucke, Chemical modelling of kerogens. Org. Geochem. 11, 15–24 (1987)CrossRef
22.
Zurück zum Zitat C.G. Scouten, M. Siskin, K.D. Rose, T. Aczel, S.G. Colgrove, R.E. Pabst Jr., Detailed structural characterization of the organic material in Rundle Ramsay crossing oil shale. Prepr. ACS Div. Petrol. Chem. 34(1), 43–47 (1989) C.G. Scouten, M. Siskin, K.D. Rose, T. Aczel, S.G. Colgrove, R.E. Pabst Jr., Detailed structural characterization of the organic material in Rundle Ramsay crossing oil shale. Prepr. ACS Div. Petrol. Chem. 34(1), 43–47 (1989)
23.
Zurück zum Zitat M. Siskin, C.G. Scouten, K.D. Rose, T. Aczel, S.G. Colgrove, R.E. Pabst, Jr., in Detailed Structural Characterization of the Organic Material in Rundle Ramsay Crossing and Green River Oil Shales, ed. by C. Snape. Composition, Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455 (Kluwer, 1995), pp. 143–158 M. Siskin, C.G. Scouten, K.D. Rose, T. Aczel, S.G. Colgrove, R.E. Pabst, Jr., in Detailed Structural Characterization of the Organic Material in Rundle Ramsay Crossing and Green River Oil Shales, ed. by C. Snape. Composition, Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455 (Kluwer, 1995), pp. 143–158
24.
Zurück zum Zitat S.R. Kelemen, M. Siskin, Organic matter models of oil shale revisited. Prepr. ACS Div. Petrol. Chem. 49(1), 73–76 (2004) S.R. Kelemen, M. Siskin, Organic matter models of oil shale revisited. Prepr. ACS Div. Petrol. Chem. 49(1), 73–76 (2004)
25.
Zurück zum Zitat H. Freund, C.C. Walters, S.R. Kelemen, M. Siskin, M.L. Gorbaty, D.J. Curry, A.E. Bence, Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part I—concepts and implementation. Org. Geochem. 38, 288–305 (2007)CrossRef H. Freund, C.C. Walters, S.R. Kelemen, M. Siskin, M.L. Gorbaty, D.J. Curry, A.E. Bence, Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part I—concepts and implementation. Org. Geochem. 38, 288–305 (2007)CrossRef
26.
Zurück zum Zitat A.M. Orendt, I.S.O. Pimienta, S.R. Badu, M.S. Solum, R.J. Pugmire, D.R. Locke, K.W. Chapman, P.J. Chupas, R.E. Winans, Three-dimensional structure of the Siskin Green River oil shale kerogen model: a comparison between calculated and observed properties. Energy Fuels 27, 702–710 (2013)CrossRef A.M. Orendt, I.S.O. Pimienta, S.R. Badu, M.S. Solum, R.J. Pugmire, D.R. Locke, K.W. Chapman, P.J. Chupas, R.E. Winans, Three-dimensional structure of the Siskin Green River oil shale kerogen model: a comparison between calculated and observed properties. Energy Fuels 27, 702–710 (2013)CrossRef
27.
Zurück zum Zitat P.L. Robin, P.G. Rouxhet, Characterization of kerogens and study of their evolution by infrared spectroscopy: carbonyl and carboxyl groups. Geochim. Cosmochim. Acta 42, 1341–1349 (1978)CrossRef P.L. Robin, P.G. Rouxhet, Characterization of kerogens and study of their evolution by infrared spectroscopy: carbonyl and carboxyl groups. Geochim. Cosmochim. Acta 42, 1341–1349 (1978)CrossRef
28.
Zurück zum Zitat A.K. Burnham, J.E. Clarkson, M.F. Singleton, C.M. Wong, R.W. Crawford, Biological markers from Green River kerogen decomposition. Geochim. Cosmochim. Acta 46, 1243–1251 (1982)CrossRef A.K. Burnham, J.E. Clarkson, M.F. Singleton, C.M. Wong, R.W. Crawford, Biological markers from Green River kerogen decomposition. Geochim. Cosmochim. Acta 46, 1243–1251 (1982)CrossRef
29.
Zurück zum Zitat A.K. Burnham, On the validity of the pristine formation index. Geochim. Cosmochim. Acta 53, 1693–1697 (1989)CrossRef A.K. Burnham, On the validity of the pristine formation index. Geochim. Cosmochim. Acta 53, 1693–1697 (1989)CrossRef
30.
Zurück zum Zitat S.R. Kelemen, M. Afeworki, M.L. Gorbaty, M. Sansone, P.J. Kwiatek, C.C. Walters, H. Freund, M. Siskin, A.E. Bence, D.G. Curry, M. Solum, R.J. Pugmire, M. Vandenbroucke, M. Leblond, F. Behar, Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels 21, 1548–1561 (2007)CrossRef S.R. Kelemen, M. Afeworki, M.L. Gorbaty, M. Sansone, P.J. Kwiatek, C.C. Walters, H. Freund, M. Siskin, A.E. Bence, D.G. Curry, M. Solum, R.J. Pugmire, M. Vandenbroucke, M. Leblond, F. Behar, Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels 21, 1548–1561 (2007)CrossRef
31.
Zurück zum Zitat U. Lille, I. Heinmaa, T. Pehk, Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel 82, 799–804 (2003)CrossRef U. Lille, I. Heinmaa, T. Pehk, Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel 82, 799–804 (2003)CrossRef
32.
Zurück zum Zitat X.-H. Guan, Y. Liu, D. Wang, Q. Wang, M.-S. Chi, S. Liu, C.-G. Liu, Three-dimensional structure of Huadian oil shale kerogen model: an experimental and theoretical study. Energy Fuels 29, 4122–4136 (2015)CrossRef X.-H. Guan, Y. Liu, D. Wang, Q. Wang, M.-S. Chi, S. Liu, C.-G. Liu, Three-dimensional structure of Huadian oil shale kerogen model: an experimental and theoretical study. Energy Fuels 29, 4122–4136 (2015)CrossRef
33.
Zurück zum Zitat J.W. Larsen, S. Li, Solvent swelling studies of Green River kerogen. Energy Fuels 8, 932–936 (1994)CrossRef J.W. Larsen, S. Li, Solvent swelling studies of Green River kerogen. Energy Fuels 8, 932–936 (1994)CrossRef
34.
Zurück zum Zitat J.W. Larsen, S. Li, An initial comparison of the interactions of Type I and Type III kerogens with organic liquids. Org. Geochem. 26, 305–309 (1997)CrossRef J.W. Larsen, S. Li, An initial comparison of the interactions of Type I and Type III kerogens with organic liquids. Org. Geochem. 26, 305–309 (1997)CrossRef
35.
Zurück zum Zitat J.W. Larsen, H.M. Parikh, R. Michels, Changes in the cross-link density of Paris Basin Toarcian kerogen during maturation. Org. Geochem. 33, 1143–1152 (2002)CrossRef J.W. Larsen, H.M. Parikh, R. Michels, Changes in the cross-link density of Paris Basin Toarcian kerogen during maturation. Org. Geochem. 33, 1143–1152 (2002)CrossRef
36.
Zurück zum Zitat N. Savest, V. Oja, T. Kaevand, U. Lille, Interaction of Estonian kukersite with organic solvents: A volumetric swelling and molecular simulation study. Fuel 86, 17–21 (2007)CrossRef N. Savest, V. Oja, T. Kaevand, U. Lille, Interaction of Estonian kukersite with organic solvents: A volumetric swelling and molecular simulation study. Fuel 86, 17–21 (2007)CrossRef
37.
Zurück zum Zitat L. Ballice, Solvent swelling studies of Göynük (kerogen Type-I) and Beypazari oil shales (kerogen Type-II). Fuel 82, 1317–1321 (2003)CrossRef L. Ballice, Solvent swelling studies of Göynük (kerogen Type-I) and Beypazari oil shales (kerogen Type-II). Fuel 82, 1317–1321 (2003)CrossRef
38.
Zurück zum Zitat S.R. Kelemen, C.C. Walters, D. Ertas, L.M. Kwiatek, Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory, Energy Fuels 20, 301–308 (2006) S.R. Kelemen, C.C. Walters, D. Ertas, L.M. Kwiatek, Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory, Energy Fuels 20, 301–308 (2006)
39.
Zurück zum Zitat L. Ballice, J.W. Larsen, Changes in the cross-link density of Göynük oil shale (Turkey) on pyrolysis. Fuel 82, 1305–1310 (2003)CrossRef L. Ballice, J.W. Larsen, Changes in the cross-link density of Göynük oil shale (Turkey) on pyrolysis. Fuel 82, 1305–1310 (2003)CrossRef
40.
Zurück zum Zitat K.H. Altgelt, M.M. Boduszynski, Composition and Analysis of Heavy Petroleum Fractions (Marcel Dekker, 1994) K.H. Altgelt, M.M. Boduszynski, Composition and Analysis of Heavy Petroleum Fractions (Marcel Dekker, 1994)
41.
Zurück zum Zitat J.G. Speight, The Chemistry and Technology of Petroleum, 3rd edn. (Marcel Dekker, 1999), pp. 412–467 J.G. Speight, The Chemistry and Technology of Petroleum, 3rd edn. (Marcel Dekker, 1999), pp. 412–467
42.
Zurück zum Zitat F. Behar, R. Pelet, J. Rouchache, Geochemistry of asphaltenes. Org. Geochem. 6, 587–595 (1984)CrossRef F. Behar, R. Pelet, J. Rouchache, Geochemistry of asphaltenes. Org. Geochem. 6, 587–595 (1984)CrossRef
43.
Zurück zum Zitat R. di Primio, B. Horsfield, M.A. Guzman-Vega, Determining the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes. Nature 406, 173–176 (2000)CrossRef R. di Primio, B. Horsfield, M.A. Guzman-Vega, Determining the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes. Nature 406, 173–176 (2000)CrossRef
44.
Zurück zum Zitat V. Dieckmann, P.G. Caccialanze, R. Galimberti, Evaluating the timing of oil expulsion: about the inverse behavior of light hydrocarbons and oil asphaltene kinetics. Org. Geochem. 33, 1501–1513 (2002)CrossRef V. Dieckmann, P.G. Caccialanze, R. Galimberti, Evaluating the timing of oil expulsion: about the inverse behavior of light hydrocarbons and oil asphaltene kinetics. Org. Geochem. 33, 1501–1513 (2002)CrossRef
45.
Zurück zum Zitat M. Keym, V. Dieckmann, Predicting the timing and characteristics of petroleum formation using tar mats and petroleum asphaltenes: a case study from the northern North Sea. J. Petrol. Geol. 29, 273–296 (2006)CrossRef M. Keym, V. Dieckmann, Predicting the timing and characteristics of petroleum formation using tar mats and petroleum asphaltenes: a case study from the northern North Sea. J. Petrol. Geol. 29, 273–296 (2006)CrossRef
46.
Zurück zum Zitat E. Lehne, Variations in bulk kinetic parameters of sulfur-rich asphaltenes isolated with different n-alkane solvents from heavy crude oils. Energy Fuels 22, 2429–2436 (2008)CrossRef E. Lehne, Variations in bulk kinetic parameters of sulfur-rich asphaltenes isolated with different n-alkane solvents from heavy crude oils. Energy Fuels 22, 2429–2436 (2008)CrossRef
47.
Zurück zum Zitat E. Lehne, V. Dieckmann, The significance of kinetic parameters and structural markers in source rock asphaltenes, reservoir asphaltenes and related source rock kerogens, the Duvernay Formation (WCSB). Fuel 86, 887–901 (2007)CrossRef E. Lehne, V. Dieckmann, The significance of kinetic parameters and structural markers in source rock asphaltenes, reservoir asphaltenes and related source rock kerogens, the Duvernay Formation (WCSB). Fuel 86, 887–901 (2007)CrossRef
48.
Zurück zum Zitat B. Horsfield, in The Bulk Composition of First-Formed Petroleum in Source Rocks, ed. by D.H. Welte, B.Horsfield, D.R. Baker. Petroleum and Basin Evolution: insights from Petroleum Geochemistry, Geology, and Basin Modeling (Springer, 1997), pp. 335–402 B. Horsfield, in The Bulk Composition of First-Formed Petroleum in Source Rocks, ed. by D.H. Welte, B.Horsfield, D.R. Baker. Petroleum and Basin Evolution: insights from Petroleum Geochemistry, Geology, and Basin Modeling (Springer, 1997), pp. 335–402
49.
Zurück zum Zitat O.C. Mullins, H. Sabbah, J. Eyssautier, A.E. Pomerantz, L. Barré, A.B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, R. Lepkowicz, T. Cooper, J. Orbulescu, R.M. Leblanc, J. Edwards, R.N. Zare, Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26, 3986–4003 (2012)CrossRef O.C. Mullins, H. Sabbah, J. Eyssautier, A.E. Pomerantz, L. Barré, A.B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, R. Lepkowicz, T. Cooper, J. Orbulescu, R.M. Leblanc, J. Edwards, R.N. Zare, Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26, 3986–4003 (2012)CrossRef
50.
Zurück zum Zitat A.E. Pomerantz, M.R. Hammon, A.L. Morrow, O.C. Mullins, R.N. Zare, Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 130, 7216–7217 (2008)CrossRef A.E. Pomerantz, M.R. Hammon, A.L. Morrow, O.C. Mullins, R.N. Zare, Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 130, 7216–7217 (2008)CrossRef
51.
Zurück zum Zitat K. Qian, K.E. Edwards, A.S. Mennito, H. Freund, R.B. Saeger, K.J. Hickey, M.A. Francisco, C. Yung, B. Chawla, C. Wu, J.D. Kushnerick, W.N. Olmstead, Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 84, 4544–4551 (2012)CrossRef K. Qian, K.E. Edwards, A.S. Mennito, H. Freund, R.B. Saeger, K.J. Hickey, M.A. Francisco, C. Yung, B. Chawla, C. Wu, J.D. Kushnerick, W.N. Olmstead, Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 84, 4544–4551 (2012)CrossRef
52.
Zurück zum Zitat H. Groenzin, O.C. Mullins, in Asphaltene Molecular Size and Weight by Time-Resolved Fluorescence Depolarization, ed. by O.C. Mullins, E.Y. Shue, A. Mammami, A.G. Marshall, Asphaltenes, Heavy Oils, and Petroleomics, Chap. 2 (Springer, 2007), pp. 17–62 H. Groenzin, O.C. Mullins, in Asphaltene Molecular Size and Weight by Time-Resolved Fluorescence Depolarization, ed. by O.C. Mullins, E.Y. Shue, A. Mammami, A.G. Marshall, Asphaltenes, Heavy Oils, and Petroleomics, Chap. 2 (Springer, 2007), pp. 17–62
53.
Zurück zum Zitat D.C. Podgorski, Y.E. Corilo, L. Nyadong, V.V. Lobodin, B.J. Bythell, W.K. Robbins, A.M. McKenna, A.G. Marshall, R.P. Rodgers, Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revisited. Energy Fuels 27, 1268–1276 D.C. Podgorski, Y.E. Corilo, L. Nyadong, V.V. Lobodin, B.J. Bythell, W.K. Robbins, A.M. McKenna, A.G. Marshall, R.P. Rodgers, Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revisited. Energy Fuels 27, 1268–1276
54.
Zurück zum Zitat H. Sabbah, A.L. Morrow, A.E. Pomerantz, R.N. Zare, Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 25, 1597–1604 (2011)CrossRef H. Sabbah, A.L. Morrow, A.E. Pomerantz, R.N. Zare, Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 25, 1597–1604 (2011)CrossRef
55.
Zurück zum Zitat B. Schuler, G. Meyer, D. Peña, O.C. Mullins, L. Gross, Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Amer. Chem. Soc. 137, 9870–9876 (2015)CrossRef B. Schuler, G. Meyer, D. Peña, O.C. Mullins, L. Gross, Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Amer. Chem. Soc. 137, 9870–9876 (2015)CrossRef
56.
Zurück zum Zitat A.K. Burnham, J.A. Happe, On the mechanism of kerogen pyrolysis. Fuel 63, 1353–1356 (1984)CrossRef A.K. Burnham, J.A. Happe, On the mechanism of kerogen pyrolysis. Fuel 63, 1353–1356 (1984)CrossRef
57.
Zurück zum Zitat M.R. Gray, Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy Fuels 17, 1566–1569 (2003)CrossRef M.R. Gray, Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy Fuels 17, 1566–1569 (2003)CrossRef
58.
Zurück zum Zitat J.G. Stainforth, Practical kinetic modeling of petroleum generation and expulsion. Mar. Petrol. Geol. 26, 552–572 (2009)CrossRef J.G. Stainforth, Practical kinetic modeling of petroleum generation and expulsion. Mar. Petrol. Geol. 26, 552–572 (2009)CrossRef
59.
Zurück zum Zitat A.S. Pepper, in Estimating The Petroleum Expulsion Behavior of Source Rocks: a Novel Quantitative Approach, ed. by W.A. England, A.J. Fleet. Primary Migration, Special Publication No. 59 (The Geological Society London, 1991), pp. 9–31 A.S. Pepper, in Estimating The Petroleum Expulsion Behavior of Source Rocks: a Novel Quantitative Approach, ed. by W.A. England, A.J. Fleet. Primary Migration, Special Publication No. 59 (The Geological Society London, 1991), pp. 9–31
60.
Zurück zum Zitat P. Ungerer, State of the art of research in kinetic modelling of oil formation and expulsion. Org. Geochem. 16, 1–25 (1990)CrossRef P. Ungerer, State of the art of research in kinetic modelling of oil formation and expulsion. Org. Geochem. 16, 1–25 (1990)CrossRef
61.
Zurück zum Zitat S.J. Düppenbecker, L. Dohmen, D.H. Welte, in Numerical modeling of petroleum expulsion in two areas of the Lower Saxony Basin, Northern Germany, ed. by W.A. England, A.J. Fleet. Primary Migration, Special Publication No. 59 (The Geological Society London, 1991), pp. 47–64 S.J. Düppenbecker, L. Dohmen, D.H. Welte, in Numerical modeling of petroleum expulsion in two areas of the Lower Saxony Basin, Northern Germany, ed. by W.A. England, A.J. Fleet. Primary Migration, Special Publication No. 59 (The Geological Society London, 1991), pp. 47–64
62.
Zurück zum Zitat R.L. Braun, A.K. Burnham, PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Org. Geochem. 19, 161–172 (1992)CrossRef R.L. Braun, A.K. Burnham, PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Org. Geochem. 19, 161–172 (1992)CrossRef
63.
Zurück zum Zitat S.R. Kelemen, C.C. Walters, D. Ertas, H. Freund, D.J. Curry, Petroleum expulsion part 3. A model of chemically driven fractionation during expulsion of petroleum from kerogen, Energy Fuels 20, 309–319 (2006) S.R. Kelemen, C.C. Walters, D. Ertas, H. Freund, D.J. Curry, Petroleum expulsion part 3. A model of chemically driven fractionation during expulsion of petroleum from kerogen, Energy Fuels 20, 309–319 (2006)
64.
Zurück zum Zitat T.V. Le Doan, N.W. Bostrom, A.K. Burnham, R.L. Kleinberg, A.E. Pomerantz, P. Allix, Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27, 6447–6459 (2013)CrossRef T.V. Le Doan, N.W. Bostrom, A.K. Burnham, R.L. Kleinberg, A.E. Pomerantz, P. Allix, Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27, 6447–6459 (2013)CrossRef
65.
Zurück zum Zitat J.J. Sweeney, A.K. Burnham, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990) J.J. Sweeney, A.K. Burnham, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990)
66.
Zurück zum Zitat Y. Feng, T.V. Le Doan, A.E. Pomerantz, The chemical composition of bitumen in pyrolyzed Green River oil shale: characterization by 13C NMR spectroscopy. Energy Fuels 27, 7314–7323 (2013)CrossRef Y. Feng, T.V. Le Doan, A.E. Pomerantz, The chemical composition of bitumen in pyrolyzed Green River oil shale: characterization by 13C NMR spectroscopy. Energy Fuels 27, 7314–7323 (2013)CrossRef
67.
Zurück zum Zitat A.E. Pomerantz, T.V. Le Doan, P.R. Craddock, K.D. Bake, R.L. Kleinberg, A.K. Burnham, Q. Wu, R.N. Zare, G. Brodnik, W.C.-H. Lo, M.B. Grayson, S. Mitra-Kirtley, T.D. Bolin, T. Wu., Impact of laboratory-induced thermal maturity on asphaltene molecular structure. Energy Fuels (2016). doi:10.1021/acs.energyfuels.6b01238 A.E. Pomerantz, T.V. Le Doan, P.R. Craddock, K.D. Bake, R.L. Kleinberg, A.K. Burnham, Q. Wu, R.N. Zare, G. Brodnik, W.C.-H. Lo, M.B. Grayson, S. Mitra-Kirtley, T.D. Bolin, T. Wu., Impact of laboratory-induced thermal maturity on asphaltene molecular structure. Energy Fuels (2016). doi:10.​1021/​acs.​energyfuels.​6b01238
68.
Zurück zum Zitat R. Pelet, F. Behar, J.C. Monin, Resins and asphaltenes in the generation and migration of petroleum. Org. Geochem. 10, 481–498 (1986)CrossRef R. Pelet, F. Behar, J.C. Monin, Resins and asphaltenes in the generation and migration of petroleum. Org. Geochem. 10, 481–498 (1986)CrossRef
69.
Zurück zum Zitat L. Carbognani, E. Rogel, Solvent swelling of petroleum asphaltenes. Energy Fuels 16, 1348–1358 (2002)CrossRef L. Carbognani, E. Rogel, Solvent swelling of petroleum asphaltenes. Energy Fuels 16, 1348–1358 (2002)CrossRef
70.
Zurück zum Zitat P. Painter, B. Veytsman, J. Youtcheff, Asphaltene aggregation and solubility. Energy Fuels 29, 2120–2133 (2015)CrossRef P. Painter, B. Veytsman, J. Youtcheff, Asphaltene aggregation and solubility. Energy Fuels 29, 2120–2133 (2015)CrossRef
71.
Zurück zum Zitat D.D. Li, M.L. Greenfield, Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 115, 347–356 (2014)CrossRef D.D. Li, M.L. Greenfield, Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 115, 347–356 (2014)CrossRef
72.
Zurück zum Zitat K.E. Peters, C.C. Walters, J.M. Moldowan, The Biomarker Guide (Cambridge University Press, 2005) K.E. Peters, C.C. Walters, J.M. Moldowan, The Biomarker Guide (Cambridge University Press, 2005)
73.
Zurück zum Zitat D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 23, pp. 699–704; Chap. 10, pp. 300–331 D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 23, pp. 699–704; Chap. 10, pp. 300–331
74.
Zurück zum Zitat H.L.C. Meuzelaar, J. Havercamp, F.D. Hileman, Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials (Elsevier, Compendium and Atlas, 1982) H.L.C. Meuzelaar, J. Havercamp, F.D. Hileman, Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials (Elsevier, Compendium and Atlas, 1982)
75.
Zurück zum Zitat S.R. Larter, A.G. Douglas, A pyrolysis-gas chromatographic method for kerogen typing. Mar. Petrol. Geol. 5, 194–204 (1978)CrossRef S.R. Larter, A.G. Douglas, A pyrolysis-gas chromatographic method for kerogen typing. Mar. Petrol. Geol. 5, 194–204 (1978)CrossRef
76.
Zurück zum Zitat K. Øygard, S. Larter, J. Senftle, The control of maturity and kerogen type on quantitative analytical pyrolysis data. Org. Geochem. 13, 1153–1162 (1988)CrossRef K. Øygard, S. Larter, J. Senftle, The control of maturity and kerogen type on quantitative analytical pyrolysis data. Org. Geochem. 13, 1153–1162 (1988)CrossRef
77.
Zurück zum Zitat J.T. Senftle, S.R. Larter, B.W. Bromley, J.H. Brown, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products. Org. Geochem. 9, 345–350 (1986)CrossRef J.T. Senftle, S.R. Larter, B.W. Bromley, J.H. Brown, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products. Org. Geochem. 9, 345–350 (1986)CrossRef
78.
Zurück zum Zitat S. Larter, Chemical models of vitrinite reflectance evolution. Geol. Rund. 78, 349–359 (1989)CrossRef S. Larter, Chemical models of vitrinite reflectance evolution. Geol. Rund. 78, 349–359 (1989)CrossRef
79.
Zurück zum Zitat B. Horsfield, Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim. Cosmochim. Acta 53, 891–901 (1989)CrossRef B. Horsfield, Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim. Cosmochim. Acta 53, 891–901 (1989)CrossRef
80.
Zurück zum Zitat D.L. VanderHart, J.L. Retcovsky, Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals. Fuel 55, 202–204 (1976)CrossRef D.L. VanderHart, J.L. Retcovsky, Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals. Fuel 55, 202–204 (1976)CrossRef
81.
Zurück zum Zitat F.P. Miknis, J.W. Smith, An NMR survey of United States oil shales. Org. Geochem. 5, 193–201 (1984)CrossRef F.P. Miknis, J.W. Smith, An NMR survey of United States oil shales. Org. Geochem. 5, 193–201 (1984)CrossRef
82.
Zurück zum Zitat F.P. Miknis, P.J. Conn, A common relation for correlating pyrolysis yields of coals and oil shales. Fuel 65, 248–250 (1986)CrossRef F.P. Miknis, P.J. Conn, A common relation for correlating pyrolysis yields of coals and oil shales. Fuel 65, 248–250 (1986)CrossRef
84.
Zurück zum Zitat F.P. Miknis, in Solid-State 13 C Nmr in Oil Shale Research: an Introduction With Selected Applications, Composition, ed. by C. Snape. Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455 (Kluwer, 1995), pp. 69–91 F.P. Miknis, in Solid-State 13 C Nmr in Oil Shale Research: an Introduction With Selected Applications, Composition, ed. by C. Snape. Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455 (Kluwer, 1995), pp. 69–91
85.
Zurück zum Zitat F.P. Miknis, A.W. Lindner, A.J. Gannon, M.F. Davis, G.E. Maciel, Solid state 13C NMR studies of selected oil shales from Queensland, Australia. Org. Geochem. 7, 239–248 (1984)CrossRef F.P. Miknis, A.W. Lindner, A.J. Gannon, M.F. Davis, G.E. Maciel, Solid state 13C NMR studies of selected oil shales from Queensland, Australia. Org. Geochem. 7, 239–248 (1984)CrossRef
86.
Zurück zum Zitat M.S. Solum, R.J. Pugmire, D.M. Grant, 13C solid-state NMR of Argonne Premium Coals. Energy Fuels 3, 187–193 (1989)CrossRef M.S. Solum, R.J. Pugmire, D.M. Grant, 13C solid-state NMR of Argonne Premium Coals. Energy Fuels 3, 187–193 (1989)CrossRef
87.
Zurück zum Zitat F.P. Miknis, D.A. Netzel, S.D. Brandes, R.A. Winschel, F.P. Burke, N.m.r. determination of aromatic carbon balances and hydrogen utilization in direct coal liquefaction. Fuel 72, 217–224 (1993)CrossRef F.P. Miknis, D.A. Netzel, S.D. Brandes, R.A. Winschel, F.P. Burke, N.m.r. determination of aromatic carbon balances and hydrogen utilization in direct coal liquefaction. Fuel 72, 217–224 (1993)CrossRef
88.
Zurück zum Zitat M.M. Maroto-Valer, J.M. Andresen, C.E. Snape, Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals. Fuel 77, 783–785 (1998)CrossRef M.M. Maroto-Valer, J.M. Andresen, C.E. Snape, Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals. Fuel 77, 783–785 (1998)CrossRef
89.
Zurück zum Zitat A.B. Andrews, J.C. Edwards, A.E. Pomerantz, O.C. Mullins, D. Nordlund, K. Norinaga, Comparison of coal-derived and petroleum asphaltenes by 13C nuclear magnetic resonance. DEPT and XRS Energy Fuels 25, 3068–3076 (2011)CrossRef A.B. Andrews, J.C. Edwards, A.E. Pomerantz, O.C. Mullins, D. Nordlund, K. Norinaga, Comparison of coal-derived and petroleum asphaltenes by 13C nuclear magnetic resonance. DEPT and XRS Energy Fuels 25, 3068–3076 (2011)CrossRef
90.
Zurück zum Zitat A.O. Odeh, Comparative study of the aromaticity of the coal structure during the char formation process under both conventional and advanced analytical techniques. Energy Fuels 29, 2676–2684 (2015)CrossRef A.O. Odeh, Comparative study of the aromaticity of the coal structure during the char formation process under both conventional and advanced analytical techniques. Energy Fuels 29, 2676–2684 (2015)CrossRef
91.
Zurück zum Zitat A.K. Burnham, R.L. Braun, R.W. Taylor, T.T. Coburn, Comparison of isothermal and nonisothermal pyrolysis data with various rate mechanisms: implications for kerogen structure. Prepr. ACS Div. Petrol. Chem. 34(1), 36–42 (1989) A.K. Burnham, R.L. Braun, R.W. Taylor, T.T. Coburn, Comparison of isothermal and nonisothermal pyrolysis data with various rate mechanisms: implications for kerogen structure. Prepr. ACS Div. Petrol. Chem. 34(1), 36–42 (1989)
92.
Zurück zum Zitat P.R. Solomon, D.G. Hamblen, Finding order in coal pyrolysis kinetics. Prog. Energy Combust. Sci. 9, 323–361 (1983)CrossRef P.R. Solomon, D.G. Hamblen, Finding order in coal pyrolysis kinetics. Prog. Energy Combust. Sci. 9, 323–361 (1983)CrossRef
93.
Zurück zum Zitat P.R. Solomon, D.G. Hamblen, R.M. Carangelo, M.A. Serio, General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)CrossRef P.R. Solomon, D.G. Hamblen, R.M. Carangelo, M.A. Serio, General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)CrossRef
94.
Zurück zum Zitat S.A. Niksa, A.R. Kerstein, FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels 5, 647–665 (1991)CrossRef S.A. Niksa, A.R. Kerstein, FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels 5, 647–665 (1991)CrossRef
95.
Zurück zum Zitat T.H. Fletcher, A.R. Kerstein, R.J. Pugmire, M.S. Solum, D.M. Grant, Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type. Energy Fuels 6, 414–431 (1992)CrossRef T.H. Fletcher, A.R. Kerstein, R.J. Pugmire, M.S. Solum, D.M. Grant, Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type. Energy Fuels 6, 414–431 (1992)CrossRef
96.
Zurück zum Zitat P.R. Solomon, T.H. Fletcher, R.J. Pugmire, Progress in coal pyrolysis. Fuel 72, 587–597 (1993)CrossRef P.R. Solomon, T.H. Fletcher, R.J. Pugmire, Progress in coal pyrolysis. Fuel 72, 587–597 (1993)CrossRef
97.
Zurück zum Zitat T.H. Fletcher, D. Barfuss, R.J. Pugmire, Modeling light gas and tar yields from pyrolysis of Green River oil shale demineralized kerogen using the chemical percolation devolatilization model. Energy Fuels 29, 4921–4926 (2015)CrossRef T.H. Fletcher, D. Barfuss, R.J. Pugmire, Modeling light gas and tar yields from pyrolysis of Green River oil shale demineralized kerogen using the chemical percolation devolatilization model. Energy Fuels 29, 4921–4926 (2015)CrossRef
98.
Zurück zum Zitat C.C. Walters, H. Freund, S.R. Kelemen, P. Peczak, D.J. Curry, Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 2—Application under laboratory and geologic conditions. Org. Geochem. 38, 306–322 (2007)CrossRef C.C. Walters, H. Freund, S.R. Kelemen, P. Peczak, D.J. Curry, Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 2—Application under laboratory and geologic conditions. Org. Geochem. 38, 306–322 (2007)CrossRef
99.
Zurück zum Zitat K.J. Jackson, A.K. Burnham, R.L. Braun, K.G. Knauss, Temperature and pressure dependence of n-hexadecane cracking. Org. Geochem. 23, 941–953 (1995)CrossRef K.J. Jackson, A.K. Burnham, R.L. Braun, K.G. Knauss, Temperature and pressure dependence of n-hexadecane cracking. Org. Geochem. 23, 941–953 (1995)CrossRef
100.
Zurück zum Zitat E. Salmon, A.C.T. van Duin, F. Lorant, P.-M Marquaire, W.A. Goddard III, Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures. Org. Geochem. 40, 1195–1209 (2009)CrossRef E. Salmon, A.C.T. van Duin, F. Lorant, P.-M Marquaire, W.A. Goddard III, Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures. Org. Geochem. 40, 1195–1209 (2009)CrossRef
101.
Zurück zum Zitat E. Salmon, A.C.T. van Duin, F. Lorant, P.-M Marquaire, W.A. Goddard III, Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2. Molecular dynamics simulations using the ReaxFF reactive force field. Org. Geochem. 40, 416–427 (2009)CrossRef E. Salmon, A.C.T. van Duin, F. Lorant, P.-M Marquaire, W.A. Goddard III, Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2. Molecular dynamics simulations using the ReaxFF reactive force field. Org. Geochem. 40, 416–427 (2009)CrossRef
102.
Zurück zum Zitat X. Liu, J.-H. Zhan, D. Lai, X. Liu, Z. Zhang, Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuels 29, 2987–2997 (2015)CrossRef X. Liu, J.-H. Zhan, D. Lai, X. Liu, Z. Zhang, Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuels 29, 2987–2997 (2015)CrossRef
103.
Zurück zum Zitat D.L. Allara, R. Shaw, A compilation of kinetic parameters for the thermal degradation of n-alkane molecules. J. Phys. Chem. Ref. Data 9, 523–559 (1980)CrossRef D.L. Allara, R. Shaw, A compilation of kinetic parameters for the thermal degradation of n-alkane molecules. J. Phys. Chem. Ref. Data 9, 523–559 (1980)CrossRef
104.
Zurück zum Zitat S.J. Blanksby, G.B. Ellison, Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003)CrossRef S.J. Blanksby, G.B. Ellison, Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003)CrossRef
Metadaten
Titel
Structures of Coal, Kerogen, and Asphaltenes
verfasst von
Alan K. Burnham
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49634-4_3