Skip to main content
Erschienen in:

03.06.2021

Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning

verfasst von: Shah Hussain, Muhammad Qasim Khan

Erschienen in: Annals of Data Science | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Forecasting academic performance of student has been a substantial research inquest in the Educational Data-Mining that utilizes Machine-learning (ML) procedures to probe the data of educational setups. Quantifying student academic performance is challenging because academic performance of students hinges on several factors. The in hand research work focuses on students’ grade and marks prediction utilizing supervised ML approaches. The data-set utilized in this research work has been obtained from the Board of Intermediate & Secondary Education (B.I.S.E) Peshawar, Khyber Pakhtunkhwa. There are 7 areas in BISEP i.e., Peshawar, FR-Peshawar, Charsadda, Khyber, Mohmand and Upper and Lower Chitral. This paper aims to examine the quality of education that is closely related to the aims of sustainability. The system has created an abundance of data which needs to be properly analyzed so that most useful information should be obtained for planning and future development. Grade and marks forecasting of students with their historical educational record is a renowned and valuable application in the EDM. It becomes an incredible information source that could be utilized in various ways to enhance the standard of education nationwide. Relevant research study reveals that numerous methods for academic performance forecasting are built to carryout improvements in administrative and teaching staff of academic organizations. In the put forwarded approach, the acquired data-set is pre-processed to purify the data quality, the labeled academic historical data of student (30 optimum attributes) is utilized to train regression model and DT-classifier. The regression will forecast marks, while grade will be forecasted by classification system, eventually analyzed the results obtained by the models. The results obtained show that machine learning technology is efficient and relevant for predicting students performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat U. Nations (2019) Sustainable Development Goals U. Nations (2019) Sustainable Development Goals
2.
Zurück zum Zitat Mula I, Tilbury D, Ryan A, Mader M, Dlouha J, Mader C, Benayas J, Dlouhý J, Alba D (2017) Catalysing change in higher education for sustainable development : a review of professional development initiatives for university educators. Int J Sustain High Educ 18(5):798CrossRef Mula I, Tilbury D, Ryan A, Mader M, Dlouha J, Mader C, Benayas J, Dlouhý J, Alba D (2017) Catalysing change in higher education for sustainable development : a review of professional development initiatives for university educators. Int J Sustain High Educ 18(5):798CrossRef
7.
Zurück zum Zitat Castro F, Vellido A, Nebot À, Mugica F (2007) Applying data mining techniques to e-learning problems. In: Eevolution of teaching and learning paradigms in intelligent environment, vol 221, pp 183–221 Castro F, Vellido A, Nebot À, Mugica F (2007) Applying data mining techniques to e-learning problems. In: Eevolution of teaching and learning paradigms in intelligent environment, vol 221, pp 183–221
9.
Zurück zum Zitat Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. J Chem Inf Model 53(9):1689–1699 Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. J Chem Inf Model 53(9):1689–1699
12.
Zurück zum Zitat Olson DL, Shi Y (2006) Introduction to business data mining, p 389340 Olson DL, Shi Y (2006) Introduction to business data mining, p 389340
14.
Zurück zum Zitat Member S (2010) Educational data mining: a review of the state of the Art. IEEE Trans Syst Man Cybern C 40(6):601–618CrossRef Member S (2010) Educational data mining: a review of the state of the Art. IEEE Trans Syst Man Cybern C 40(6):601–618CrossRef
15.
Zurück zum Zitat Baker RSJD, Yacef K (2009) The state of educational data mining in 2009: a review and future visions. J Edu Data Mining 1(1):3–16 Baker RSJD, Yacef K (2009) The state of educational data mining in 2009: a review and future visions. J Edu Data Mining 1(1):3–16
16.
Zurück zum Zitat Baker RSJ (2020) Data mining for education data mining for education advantages relative to traditional educational research paradigms Baker RSJ (2020) Data mining for education data mining for education advantages relative to traditional educational research paradigms
17.
Zurück zum Zitat Ren Z, Sweeney M (2016) Predicting student performance using personalized analytics, pp 61–69 Ren Z, Sweeney M (2016) Predicting student performance using personalized analytics, pp 61–69
18.
Zurück zum Zitat Buenaño-fern D, Gil D (2019) Application of machine learning in predicting performance for computer engineering students : a case study, pp 1–18 Buenaño-fern D, Gil D (2019) Application of machine learning in predicting performance for computer engineering students : a case study, pp 1–18
20.
Zurück zum Zitat Khalifa S, Elshater Y, Sundaravarathan K, Bhat A (2016) The Six Pillars for Building Big Data Analytics Ecosystems. ACM Comput Surv 49(2):1–36CrossRef Khalifa S, Elshater Y, Sundaravarathan K, Bhat A (2016) The Six Pillars for Building Big Data Analytics Ecosystems. ACM Comput Surv 49(2):1–36CrossRef
24.
Zurück zum Zitat Lu OHT, Huang AYQ, Huang JCH, Lin AJQ, Yang SJH (2018) Applying learning analytics for the early prediction of students ’ academic performance in blended learning. Edu Technol Soc 21(2):220–232 Lu OHT, Huang AYQ, Huang JCH, Lin AJQ, Yang SJH (2018) Applying learning analytics for the early prediction of students ’ academic performance in blended learning. Edu Technol Soc 21(2):220–232
33.
Zurück zum Zitat Kuncheva L (1993) Genetic algorithm for feature selection for parallel classifiers. Inf Process Lett 16:163–168CrossRef Kuncheva L (1993) Genetic algorithm for feature selection for parallel classifiers. Inf Process Lett 16:163–168CrossRef
Metadaten
Titel
Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning
verfasst von
Shah Hussain
Muhammad Qasim Khan
Publikationsdatum
03.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 3/2023
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-021-00341-0

Premium Partner