Skip to main content

2015 | OriginalPaper | Buchkapitel

12. Studies on Effect of Process Parameters Variation on Bio-oil Yield in Subcritical and Supercritical Hydrothermal Liquefaction of Malaysian Oil Palm Biomass

verfasst von : Yi Herng Chan, Suzana Yusup, Armando T. Quitain, Raymond R. Tan, Yoshimitsu Uemura, Mitsuru Sasaki, Hon Loong Lam

Erschienen in: Advances in Bioprocess Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental studies on liquefaction of three types of Malaysian oil palm biomass, namely empty fruit bunch (EFB), palm mesocarp fiber (PMF) and palm kernel shell (PKS) using water at subcritical and supercritical conditions are conducted in an Inconel batch reactor. The main objective of the present study is to investigate the effect of variation in process parameters such as temperature, pressure and reaction time on the bio-oil yield from the hydrothermal liquefaction of the biomass feedstocks. At the end of the chapter, a general life cycle assessment (LCA) of a liquefaction process is conducted to evaluate the impacts on the environment. In the present study, it is found that the optimum temperature and pressure for maximum bio-oil yield for all the three biomass feedstocks is at supercritical condition of water (390 °C, 25 MPa) and the optimum reaction time is 2 h for EFB and PMF and 4 h for PKS. The LCA indicates that liquefaction process has the highest influence in global warming potential, while other impacts such as acidification, eutrophication, toxicity and photo-oxidant formation are negligible.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdullah, N., & Gerhauser, H. (2008). Bio-oil derived from empty fruit bunches. Fuel, 87, 2606–2613.CrossRef Abdullah, N., & Gerhauser, H. (2008). Bio-oil derived from empty fruit bunches. Fuel, 87, 2606–2613.CrossRef
Zurück zum Zitat Abdullah, N., Gerhauser, H., & Sulaiman, F. (2010). Fast pyrolysis of empty fruit bunches. Fuel, 89, 2166–2169.CrossRef Abdullah, N., Gerhauser, H., & Sulaiman, F. (2010). Fast pyrolysis of empty fruit bunches. Fuel, 89, 2166–2169.CrossRef
Zurück zum Zitat Akhtar, J., & Amin, N. A. S. (2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 15, 1615–1624.CrossRef Akhtar, J., & Amin, N. A. S. (2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 15, 1615–1624.CrossRef
Zurück zum Zitat Akhtar, J., Kuang, S. K., & Amin, N. A. S. (2010). Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renewable Energy, 35, 1220–1227.CrossRef Akhtar, J., Kuang, S. K., & Amin, N. A. S. (2010). Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renewable Energy, 35, 1220–1227.CrossRef
Zurück zum Zitat Anastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102, 4876–4883.CrossRef Anastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102, 4876–4883.CrossRef
Zurück zum Zitat Aysu, T., & Kucuk, M. M. (2013). Liquefaction of giant fennel (Ferula orientalis L.) in supercritical organic solvents: Effects of liquefaction parameters on product yields and character. Journal of Supercritical Fluids, 83, 104–123.CrossRef Aysu, T., & Kucuk, M. M. (2013). Liquefaction of giant fennel (Ferula orientalis L.) in supercritical organic solvents: Effects of liquefaction parameters on product yields and character. Journal of Supercritical Fluids, 83, 104–123.CrossRef
Zurück zum Zitat Barreiro, D. L., Prins, W., Ronsse, F., & Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass and Bioenergy, 53, 113–127.CrossRef Barreiro, D. L., Prins, W., Ronsse, F., & Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass and Bioenergy, 53, 113–127.CrossRef
Zurück zum Zitat Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. Journal of Supercritical Fluids, 47, 373–381.CrossRef Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. Journal of Supercritical Fluids, 47, 373–381.CrossRef
Zurück zum Zitat Butler, E., Devlin, G., Meier, D., & McDonnell, K. (2011). A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15, 4171–4186.CrossRef Butler, E., Devlin, G., Meier, D., & McDonnell, K. (2011). A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15, 4171–4186.CrossRef
Zurück zum Zitat Carnegie Mellon University Green Design Institute. (2014). Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428 sectors) Purchaser model [Internet]. Retrieved June 22, 2014, from http://www.eiolca.net/ Carnegie Mellon University Green Design Institute. (2014). Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428 sectors) Purchaser model [Internet]. Retrieved June 22, 2014, from http://​www.​eiolca.​net/​
Zurück zum Zitat Chan, Y. H., Vi, D. K., Yusup, S., Lim, M. T., Zain, A. M., & Uemura, Y. (2014). Studies on catalytic pyrolysis of empty fruit bunch (EFB) using Taguchi’s L9 orthogonal array. Journal of the Energy Institute, 87, 227–234.CrossRef Chan, Y. H., Vi, D. K., Yusup, S., Lim, M. T., Zain, A. M., & Uemura, Y. (2014). Studies on catalytic pyrolysis of empty fruit bunch (EFB) using Taguchi’s L9 orthogonal array. Journal of the Energy Institute, 87, 227–234.CrossRef
Zurück zum Zitat Chen, Y., Wu, Y., Zhang, P., Hua, D., Yang, M., Li, C., et al. (2012). Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Bioresource Technology, 124, 190–198.CrossRef Chen, Y., Wu, Y., Zhang, P., Hua, D., Yang, M., Li, C., et al. (2012). Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Bioresource Technology, 124, 190–198.CrossRef
Zurück zum Zitat Demirbas, A. (2000a). Effect of lignin content on aqueous liquefaction products of biomass. Energy Conversion & Management, 41, 1601–1607.CrossRef Demirbas, A. (2000a). Effect of lignin content on aqueous liquefaction products of biomass. Energy Conversion & Management, 41, 1601–1607.CrossRef
Zurück zum Zitat Demirbas, A. (2000b). Liquefaction of olive husk by supercritical fluid extraction. Energy Conversion & Management, 41, 1875–1883.CrossRef Demirbas, A. (2000b). Liquefaction of olive husk by supercritical fluid extraction. Energy Conversion & Management, 41, 1875–1883.CrossRef
Zurück zum Zitat Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82.CrossRef Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., & Sturm, B. S. M. (2014). Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 122, 73–82.CrossRef
Zurück zum Zitat Guinée, J. B. (Ed.). (2002). Handbook on Life Cycle Assessment: Operational guide to the ISO standards. Dordrecht: Kluwer. Guinée, J. B. (Ed.). (2002). Handbook on Life Cycle Assessment: Operational guide to the ISO standards. Dordrecht: Kluwer.
Zurück zum Zitat Hammond, J., Shackley, S., Sohi, S., & Brownsort, P. (2011). Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy, 39, 2646–2655.CrossRef Hammond, J., Shackley, S., Sohi, S., & Brownsort, P. (2011). Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy, 39, 2646–2655.CrossRef
Zurück zum Zitat Hew, K. L., Tamidi, A. M., Yusup, S., Lee, K. T., & Ahmad, M. M. (2010). Catalytic cracking of bio-oil to organic liquid product (OLP). Bioresource Technology, 101, 8855–8858.CrossRef Hew, K. L., Tamidi, A. M., Yusup, S., Lee, K. T., & Ahmad, M. M. (2010). Catalytic cracking of bio-oil to organic liquid product (OLP). Bioresource Technology, 101, 8855–8858.CrossRef
Zurück zum Zitat Iribarren, D., Peters, J. F., & Dufour, J. (2012). Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel, 97, 812–821.CrossRef Iribarren, D., Peters, J. F., & Dufour, J. (2012). Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel, 97, 812–821.CrossRef
Zurück zum Zitat ISO 14040. (1997). Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardisation. ISO 14040. (1997). Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardisation.
Zurück zum Zitat Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25, 5472–5482.CrossRef Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25, 5472–5482.CrossRef
Zurück zum Zitat Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102, 6221–6229.CrossRef Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102, 6221–6229.CrossRef
Zurück zum Zitat Joelsson, J. M., & Gustavsson, L. (2010). Reduction of CO2 emission and oil dependency with biomass-based polygeneration. Biomass and Bioenergy, 34, 967–984.CrossRef Joelsson, J. M., & Gustavsson, L. (2010). Reduction of CO2 emission and oil dependency with biomass-based polygeneration. Biomass and Bioenergy, 34, 967–984.CrossRef
Zurück zum Zitat Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35, 5692–5701.CrossRef Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35, 5692–5701.CrossRef
Zurück zum Zitat Khoo, H. H. (2009). Life cycle impact assessment of various waste conversion technologies. Waste Management, 29, 1892–1900.CrossRef Khoo, H. H. (2009). Life cycle impact assessment of various waste conversion technologies. Waste Management, 29, 1892–1900.CrossRef
Zurück zum Zitat Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. Journal of Supercritical Fluids, 39, 362–380.CrossRef Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. Journal of Supercritical Fluids, 39, 362–380.CrossRef
Zurück zum Zitat Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17, 515–521.CrossRef Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17, 515–521.CrossRef
Zurück zum Zitat Kus, N. S. (2012). Organic reactions in subcritical and supercritical water. Tetrahedron, 68, 949–958.CrossRef Kus, N. S. (2012). Organic reactions in subcritical and supercritical water. Tetrahedron, 68, 949–958.CrossRef
Zurück zum Zitat Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., James, R., et al. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171.CrossRef Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., James, R., et al. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171.CrossRef
Zurück zum Zitat Liu, Z., & Zhang, F. S. (2008). Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 49, 3498–3504.CrossRef Liu, Z., & Zhang, F. S. (2008). Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 49, 3498–3504.CrossRef
Zurück zum Zitat Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010a). Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts. Bioresource Technology, 101, 745–751.CrossRef Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010a). Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts. Bioresource Technology, 101, 745–751.CrossRef
Zurück zum Zitat Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010b). Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: Effects of solvents. Bioresource Technology, 101, 7641–7647.CrossRef Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010b). Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: Effects of solvents. Bioresource Technology, 101, 7641–7647.CrossRef
Zurück zum Zitat Meryemoğlu, B., Hasanoğlu, A., Irmak, S., & Erbatur, O. (2014). Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. Bioresource Technology, 151, 278–283.CrossRef Meryemoğlu, B., Hasanoğlu, A., Irmak, S., & Erbatur, O. (2014). Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. Bioresource Technology, 151, 278–283.CrossRef
Zurück zum Zitat Miao, C., Chakraborty, M., & Chen, S. (2012). Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresource Technology, 110, 617–627.CrossRef Miao, C., Chakraborty, M., & Chen, S. (2012). Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresource Technology, 110, 617–627.CrossRef
Zurück zum Zitat Ning, S. K., Hung, M. C., Chang, Y. H., Wan, H. P., Lee, H. T., & Shih, R. F. (2013). Benefit assessment of cost, energy, and environment for biomass pyrolysis oil. Journal of Cleaner Production, 59, 141–149.CrossRef Ning, S. K., Hung, M. C., Chang, Y. H., Wan, H. P., Lee, H. T., & Shih, R. F. (2013). Benefit assessment of cost, energy, and environment for biomass pyrolysis oil. Journal of Cleaner Production, 59, 141–149.CrossRef
Zurück zum Zitat Okajima, I., & Sako, T. (2014). Energy conversion of biomass with supercritical and subcritical water using large-scale plants. Journal of Bioscience and Bioengineering, 117, 1–9.CrossRef Okajima, I., & Sako, T. (2014). Energy conversion of biomass with supercritical and subcritical water using large-scale plants. Journal of Bioscience and Bioengineering, 117, 1–9.CrossRef
Zurück zum Zitat Qian, Y., Zuo, C., Tan, J., & He, J. (2007). Structural analysis of bio-oils from sub- and supercritical water liquefaction of woody biomass. Energy, 32, 196–202.CrossRef Qian, Y., Zuo, C., Tan, J., & He, J. (2007). Structural analysis of bio-oils from sub- and supercritical water liquefaction of woody biomass. Energy, 32, 196–202.CrossRef
Zurück zum Zitat Radoykova, T., Nenkova, S., & Valchev, I. (2013). Black liquor lignin products, isolation and characterization. Journal of Chemical Technology and Metallurgy, 48, 524–529. Radoykova, T., Nenkova, S., & Valchev, I. (2013). Black liquor lignin products, isolation and characterization. Journal of Chemical Technology and Metallurgy, 48, 524–529.
Zurück zum Zitat Sahu, S. (2003). Supercritical Fluid Extraction: A Cleaner Technology Option For The Industry. In R. Sanghi & M. M. Srivastava (Eds.), Green chemistry: Environment friendly alternatives (pp. 123–145). New Delhi: Narosa Publishing House. Sahu, S. (2003). Supercritical Fluid Extraction: A Cleaner Technology Option For The Industry. In R. Sanghi & M. M. Srivastava (Eds.), Green chemistry: Environment friendly alternatives (pp. 123–145). New Delhi: Narosa Publishing House.
Zurück zum Zitat Sangaletti-Gerhard, N., Romanelli, T. L., Vieira, T. M., Ferreirade, S., Navia, R., & Regitano-d’Arce, M. A. B. (2014). Energy flow in the soybean biodiesel production chain using ethanol as solvent extraction of oil from soybeans. Biomass and Bioenergy, 66, 39–48.CrossRef Sangaletti-Gerhard, N., Romanelli, T. L., Vieira, T. M., Ferreirade, S., Navia, R., & Regitano-d’Arce, M. A. B. (2014). Energy flow in the soybean biodiesel production chain using ethanol as solvent extraction of oil from soybeans. Biomass and Bioenergy, 66, 39–48.CrossRef
Zurück zum Zitat Sathre, R. (2014). Comparing the heat of combustion of fossil fuels to the heat accumulated by their lifecycle greenhouse gases. Fuel, 115, 674–677.CrossRef Sathre, R. (2014). Comparing the heat of combustion of fossil fuels to the heat accumulated by their lifecycle greenhouse gases. Fuel, 115, 674–677.CrossRef
Zurück zum Zitat Savage, P. E., Levine, R. B., & Huelsman, C. M. (2010). Hydrothermal Processing of Biomass. In M. Crocker (Ed.), Thermochemical conversion of biomass to liquid fuels and chemicals (pp. 192–221). Cambridge: The Royal Society of Chemistry.CrossRef Savage, P. E., Levine, R. B., & Huelsman, C. M. (2010). Hydrothermal Processing of Biomass. In M. Crocker (Ed.), Thermochemical conversion of biomass to liquid fuels and chemicals (pp. 192–221). Cambridge: The Royal Society of Chemistry.CrossRef
Zurück zum Zitat Shekarchian, M., Moghavvemi, M., Mahlia, T. M. I., & Mazandarani, A. (2011). A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008. Renewable and Sustainable Energy Reviews, 15, 2629–2642.CrossRef Shekarchian, M., Moghavvemi, M., Mahlia, T. M. I., & Mazandarani, A. (2011). A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008. Renewable and Sustainable Energy Reviews, 15, 2629–2642.CrossRef
Zurück zum Zitat Sulaiman, F., & Abdullah, N. (2011). Optimum conditions for maximizing pyrolysis liquids of oil palm empty fruit bunches. Energy, 36, 2352–2359.CrossRef Sulaiman, F., & Abdullah, N. (2011). Optimum conditions for maximizing pyrolysis liquids of oil palm empty fruit bunches. Energy, 36, 2352–2359.CrossRef
Zurück zum Zitat Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36, 2328–2342.CrossRef Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36, 2328–2342.CrossRef
Zurück zum Zitat Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331.CrossRef Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331.CrossRef
Zurück zum Zitat Wang, F., Chang, Z., Duan, P., Yan, W., Xu, Y., Zhang, L., et al. (2013). Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Bioresource Technology, 149, 509–515.CrossRef Wang, F., Chang, Z., Duan, P., Yan, W., Xu, Y., Zhang, L., et al. (2013). Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Bioresource Technology, 149, 509–515.CrossRef
Zurück zum Zitat Wen, D., Jiang, H., & Zhang, K. (2009). Supercritical fluids technology for clean biofuel production. Progress in Natural Science, 19, 273–284.CrossRef Wen, D., Jiang, H., & Zhang, K. (2009). Supercritical fluids technology for clean biofuel production. Progress in Natural Science, 19, 273–284.CrossRef
Zurück zum Zitat Zhou, H., Long, Y. Q., Meng, A. H., Li, Q. H., & Zhang, Y. G. (2013). The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta, 566, 36–43.CrossRef Zhou, H., Long, Y. Q., Meng, A. H., Li, Q. H., & Zhang, Y. G. (2013). The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta, 566, 36–43.CrossRef
Metadaten
Titel
Studies on Effect of Process Parameters Variation on Bio-oil Yield in Subcritical and Supercritical Hydrothermal Liquefaction of Malaysian Oil Palm Biomass
verfasst von
Yi Herng Chan
Suzana Yusup
Armando T. Quitain
Raymond R. Tan
Yoshimitsu Uemura
Mitsuru Sasaki
Hon Loong Lam
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_12