Zum Inhalt

Studies on High Temperature Wear Behavior of Additively Manufactured Ti-6Al-4V Alloy Using Machine Learning Models

  • 04.11.2025
  • Original Research Article

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work focuses on tribological performance of titanium alloy processed by laser bed fusion (LBF) at elevated temperature. The specimens were prepared using the laser bed fusion method, and further heat treatment (annealing) was carried out at temperature of 860 and 960 °C. Microstructure of as-printed and heat-treated alloy specimens was studied using optical microscope as well as scanning electron microscope (SEM). Tribological behavior has been determined by means of pin-on-disk tribometer in dry condition at elevated temperature, with EN31 as counter material. Results show that COF gets reduced by 4.5 and 15.2%, respectively, with increase in load and pin temperature. Also, friction coefficient gets reduced by 1.75% when annealing temperature increases from 860 to 960 °C. However wear rate gets increased by 75 and 47% with increase in load and pin temperature. Eight diverse machine learning algorithms, Neural Network, Extra Trees, Random forest regressor, K-Nearest Neighbor (KNN), Decision Tree, Histogram-based Gradient Boosting, XG Boost and Cat Boost were applied to the experimental data. Performance calculations verified that ML-based models can successfully predict the variation of Wear and COF. The Extra Trees regression model outperforms other machine learning models, achieving the highest accuracy with an R2 of 99.79% and the lowest MSE of 0.0824 for COF, and R2 of 94.67% with an MSE of 0.0003 for wear. This highlights its superior predictive capability and minimal error. Different wear mechanisms were identified by analyzing the worn surfaces and wear transition. Additionally, a wear mechanism map was developed to identify safe loading condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Titel
Studies on High Temperature Wear Behavior of Additively Manufactured Ti-6Al-4V Alloy Using Machine Learning Models
Verfasst von
D. Amrishraj
M. Natesh
T. Senthilvelan
B. Nethravathi
Pooja Anagolkar
T. Ramprabhu
Publikationsdatum
04.11.2025
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-025-12596-2
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise
    MKVS GbR/© MKVS GbR, Nordson/© Nordson, ViscoTec/© ViscoTec, BCD Chemie GmbH, Merz+Benteli/© Merz+Benteli, Robatech/© Robatech, Hermann Otto GmbH/© Hermann Otto GmbH, Ruderer Klebetechnik GmbH, Xometry Europe GmbH/© Xometry Europe GmbH, Atlas Copco/© Atlas Copco, Sika/© Sika, Medmix/© Medmix, Kisling AG/© Kisling AG, Dosmatix GmbH/© Dosmatix GmbH, Innotech GmbH/© Innotech GmbH, Hilger u. Kern GmbH, VDI Logo/© VDI Wissensforum GmbH, Dr. Fritz Faulhaber GmbH & Co. KG/© Dr. Fritz Faulhaber GmbH & Co. KG, ECHTERHAGE HOLDING GMBH&CO.KG - VSE, mta robotics AG/© mta robotics AG, Bühnen