Skip to main content
Erschienen in: Bulletin of Engineering Geology and the Environment 3/2024

01.03.2024 | Original Paper

Study and verification on an improved comprehensive prediction model of landslide displacement

verfasst von: Tianlong Wang, Rui Luo, Tianxing Ma, Hao Chen, Keying Zhang, Xu Wang, Zhaowei Chu, Hongyue Sun

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, many models are extensively employed for landslide displacement forecast; however, the potential impact of structural parameters on the accuracy of model predictions remains inadequately addressed. Additionally, the optimization algorithm commonly utilized in the realm of landslide displacement forecast still faces certain challenges, including a restricted search area and a propensity to converge on local optimal solutions. In this study, a new comprehensive prediction model is proposed. To begin with, the conventional Aquila optimizer algorithm (AO) has undergone improvement in three key areas: population initialization in Tent chaotic mapping, global optimal individual update on adaptive weight factor, and population update based on opposition-based differential evolution. The improved Aquila optimizer algorithm (IAO) and AO have been evaluated through benchmark function comparisons to verify the effectiveness of three improvement strategies. The results demonstrate the effectiveness of it, especially in terms of its enhanced convergence speed, optimization accuracy, and robustness. This led to the utilization of IAO for parameter optimization of variational mode decomposition (VMD) and bidirectional long short-term memory neural network (BiLSTM), ultimately constructing the IVMD-IAO-BiLSTM prediction model. Then, taking the Qili landslide in Zhejiang Province of China as an example, combined with two years’ worth of independent monitoring data of rainfall, groundwater level, and surface displacement, the displacement series is predicted based on IVMD-IAO-BiLSTM. Under the same prediction conditions, it is compared with the multi-factor-multi-scale model proposed by Xiong C and ten commonly used prediction models. The results validated the superiority of the IVMD-IAO-BiLSTM model, which had the lowest root mean square error and mean absolute error among all prediction results at 0.14 and 0.09, respectively. Therefore, IVMD-IAO-BiLSTM effectively harnesses the enhancing effect of structural parameters, providing a new approach for early warning and risk assessment of landslides with its notable prediction accuracy and performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Rahnamayan S, Wang GG (2008) Solving large scale optimization problems by opposition-based differential evolution (ODE). WSEAS Trans Comput 7:1768–1780 Rahnamayan S, Wang GG (2008) Solving large scale optimization problems by opposition-based differential evolution (ODE). WSEAS Trans Comput 7:1768–1780
Metadaten
Titel
Study and verification on an improved comprehensive prediction model of landslide displacement
verfasst von
Tianlong Wang
Rui Luo
Tianxing Ma
Hao Chen
Keying Zhang
Xu Wang
Zhaowei Chu
Hongyue Sun
Publikationsdatum
01.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 3/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03581-5

Weitere Artikel der Ausgabe 3/2024

Bulletin of Engineering Geology and the Environment 3/2024 Zur Ausgabe