Skip to main content
Erschienen in: Journal of Electronic Materials 7/2021

22.04.2021 | Original Research Article

Study of Carrier Transfer Mechanism When Substituting Strontium at Barium Sites in CuTl-1223 Superconducting Phase

verfasst von: Syed Hamza Safeer, Ayesha Riaz, Nawazish A. Khan

Erschienen in: Journal of Electronic Materials | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Strontium-doped CuTl-1223 phase has been obtained by employing a nonstoichiometric composition of the form Tl1/2Cu1/2(Ba1−xSrx)Ca1Cu4Oy (x = 0, 0.1, 0.2, 0.3). The superconducting properties of the samples were investigated by x-ray diffraction analysis and four-probe resistivity, alternating-current (AC) susceptibility, and Fourier-transform infrared (FTIR) absorption measurements. The effect of doping strontium atoms on the intrinsic superconductor parameters of these samples was studied by excess conductivity analysis. All the samples showed orthorhombic crystal structure in space group Pmmm, and the cell parameters were determined by using all the planar reflections. The c-axis length and the unit cell volume decreased with Sr doping in the final compound. Suppression of the room-temperature resistivity followed by metallic variations in resistivity versus temperature measurements are typical features for these samples. The zero-resistivity critical temperature and the onset of diamagnetism were suppressed with increasing Sr doping in the final compound. The apical oxygen phonon mode of type Cu(1)–OA–Cu(2) observed at around 548 cm−1 hardened with increasing Sr doping. The excess conductivity analysis revealed that the coherence length along the c-axis, the interlayer coupling, and the Fermi velocity of the carriers increased for the Sr doping levels of x = 0.1 and 0.2 but decreased for the sample with x = 0.3. The values of Bc0(T), Bc1(T), and Jc0(0) increased with increasing Sr doping in the final compound. It is proposed that this effect arises due to an increase in the superconducting volume fraction. A decrease in the value of the London penetration depth λp.d. and the Ginzburg–Landau (GL) parameter shows that the flux-pinning characteristics of the samples were improved by Sr doping. An increase in the mean free time of the carriers and a decrease in the energy required to break apart Cooper pairs result from a decrease in the remanent field scattering induced by the increased population of pinning centers in Sr-doped samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Raza, N.A. Khan, and N. Hassan, J. Electron. Mater. 49, 2302 (2020).CrossRef A. Raza, N.A. Khan, and N. Hassan, J. Electron. Mater. 49, 2302 (2020).CrossRef
2.
Zurück zum Zitat K. Naseem, N.A. Khan, and S.H. Safeer, J. Electron. Mater. 50, 2164 (2021).CrossRef K. Naseem, N.A. Khan, and S.H. Safeer, J. Electron. Mater. 50, 2164 (2021).CrossRef
3.
Zurück zum Zitat B. Shabbir, M.I. Malik, and N.A. Khan, J. Supercond. Nov. Magn. 24, 1977 (2011).CrossRef B. Shabbir, M.I. Malik, and N.A. Khan, J. Supercond. Nov. Magn. 24, 1977 (2011).CrossRef
4.
Zurück zum Zitat B. Shabbir, A. Ullah, N. Hassan, M. Irfan, and N.A. Khan, J. Supercond. Nov. Magn. 24, 1521 (2011).CrossRef B. Shabbir, A. Ullah, N. Hassan, M. Irfan, and N.A. Khan, J. Supercond. Nov. Magn. 24, 1521 (2011).CrossRef
5.
6.
Zurück zum Zitat N.A. Khan, and G. Husnain, Physica C Supercond. Appl. 436, 51 (2006).CrossRef N.A. Khan, and G. Husnain, Physica C Supercond. Appl. 436, 51 (2006).CrossRef
7.
Zurück zum Zitat B. Shabbir, X. Wang, S.R. Ghorbani, C. Shekhar, S. Dou, and O.N. Srivastava, Sci. Rep. 5, 8213 (2015).CrossRef B. Shabbir, X. Wang, S.R. Ghorbani, C. Shekhar, S. Dou, and O.N. Srivastava, Sci. Rep. 5, 8213 (2015).CrossRef
8.
Zurück zum Zitat B. Shabbir, X. Wang, S.R. Ghorbani, A.F. Wang, S. Dou, and X.H. Chen, Sci. Rep. 5, 10606 (2015).CrossRef B. Shabbir, X. Wang, S.R. Ghorbani, A.F. Wang, S. Dou, and X.H. Chen, Sci. Rep. 5, 10606 (2015).CrossRef
9.
Zurück zum Zitat B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, and X. Wang, Phys. Rev. Mater. 1, 044805 (2017).CrossRef B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, and X. Wang, Phys. Rev. Mater. 1, 044805 (2017).CrossRef
10.
Zurück zum Zitat N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, and A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010).CrossRef N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, and A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010).CrossRef
11.
Zurück zum Zitat K. Pansuria, D. Kuberkar, G. Baldha, and R. Kulkarni, J. Supercond. 10, 59 (1997).CrossRef K. Pansuria, D. Kuberkar, G. Baldha, and R. Kulkarni, J. Supercond. 10, 59 (1997).CrossRef
12.
Zurück zum Zitat M.M. Elkholy, I.L.M. Sharaf El-Deen, T.M.M. El-Zaidia, I.A. A. El-Hamalawy and W.M. Hussain, Radiat. Phys. Chem. 47(5), 691 (1996). M.M. Elkholy, I.L.M. Sharaf El-Deen, T.M.M. El-Zaidia, I.A. A. El-Hamalawy and W.M. Hussain, Radiat. Phys. Chem. 47(5), 691 (1996).
13.
Zurück zum Zitat E. Oliber, C. Gonzalez-Oliver, F. Prado, A. Serquis, A. Caneiro, and D. Esparza, Physica C 235–240, 469 (1994).CrossRef E. Oliber, C. Gonzalez-Oliver, F. Prado, A. Serquis, A. Caneiro, and D. Esparza, Physica C 235–240, 469 (1994).CrossRef
14.
Zurück zum Zitat A. Sin, F. Alsina, N. Mestres, A. Sulpice, P. Odier, and M. NuHnez-Regueiro, J. Solid State Chem. 161, 355 (2001).CrossRef A. Sin, F. Alsina, N. Mestres, A. Sulpice, P. Odier, and M. NuHnez-Regueiro, J. Solid State Chem. 161, 355 (2001).CrossRef
15.
Zurück zum Zitat M. Sumadiyasa, N. Wendri, P. Suardana, and N.N. Rupiasih, J. Mater. Sci. Chem. Eng. 8, 44 (2020). M. Sumadiyasa, N. Wendri, P. Suardana, and N.N. Rupiasih, J. Mater. Sci. Chem. Eng. 8, 44 (2020).
16.
Zurück zum Zitat C. Collignon, X. Lin, C.W. Rischau, and B.F.K. Behnia, Annu. Rev. Condens. Matter Phys. 6, 2 (2018). C. Collignon, X. Lin, C.W. Rischau, and B.F.K. Behnia, Annu. Rev. Condens. Matter Phys. 6, 2 (2018).
17.
Zurück zum Zitat Y. Tomioka, N. Shirakawa, K. Shibuya, and I.H. Inoue, Nat. Commun. 10, 738 (2019).CrossRef Y. Tomioka, N. Shirakawa, K. Shibuya, and I.H. Inoue, Nat. Commun. 10, 738 (2019).CrossRef
18.
19.
20.
Zurück zum Zitat P. Toulemonde, P. Odier, P. Bordet, S. Le Floch, and E. Suard, J. Phys. Condens. Matter 16, 4061 (2004).CrossRef P. Toulemonde, P. Odier, P. Bordet, S. Le Floch, and E. Suard, J. Phys. Condens. Matter 16, 4061 (2004).CrossRef
21.
Zurück zum Zitat C.C. Lai, P.C. Ho, C.Y. Hung, and H.C. Ku, Chin. J. Phys. 29, 1 (1991). C.C. Lai, P.C. Ho, C.Y. Hung, and H.C. Ku, Chin. J. Phys. 29, 1 (1991).
22.
Zurück zum Zitat A. Raza, S.H. Safeer, and N.A. Khan, J. Supercond. Nov. Magn. 30, 1153 (2017).CrossRef A. Raza, S.H. Safeer, and N.A. Khan, J. Supercond. Nov. Magn. 30, 1153 (2017).CrossRef
23.
24.
Zurück zum Zitat N.A. Khan, M. Mumtaz, K. Sabeeh, M.I.A. Khan, and M. Ahmed, Phys. C Supercond. Appl. 407, 103 (2004).CrossRef N.A. Khan, M. Mumtaz, K. Sabeeh, M.I.A. Khan, and M. Ahmed, Phys. C Supercond. Appl. 407, 103 (2004).CrossRef
25.
Zurück zum Zitat M. Kaur, R. Srinivasan, G. Mehta, D. Kanjilal, R. Pinto, S. Ogale, S. Mohan, and V. Ganesan, Physica C Supercond. 443, 61 (2006).CrossRef M. Kaur, R. Srinivasan, G. Mehta, D. Kanjilal, R. Pinto, S. Ogale, S. Mohan, and V. Ganesan, Physica C Supercond. 443, 61 (2006).CrossRef
26.
Zurück zum Zitat M.M. Sekkina, and K.M. Elsabawy, Physica C Supercond. 377, 254 (2002).CrossRef M.M. Sekkina, and K.M. Elsabawy, Physica C Supercond. 377, 254 (2002).CrossRef
27.
Zurück zum Zitat A.K. Ghosh, S.K. Bandyopadhyay, P. Sen, and A.N. Basu, Condens. Matter Phys. 264, 255 (1996). A.K. Ghosh, S.K. Bandyopadhyay, P. Sen, and A.N. Basu, Condens. Matter Phys. 264, 255 (1996).
28.
Zurück zum Zitat M. Mumtaz, L. Ali, M. Waqee-ur Rehman, K. Nadeem, G. Hussain, G. Abbas, and B. Majeed, J. Supercond. Nov. Magn. 30, 2741 (2017).CrossRef M. Mumtaz, L. Ali, M. Waqee-ur Rehman, K. Nadeem, G. Hussain, G. Abbas, and B. Majeed, J. Supercond. Nov. Magn. 30, 2741 (2017).CrossRef
29.
Zurück zum Zitat N.A. Khan, S.H. Safeer, M.N. Khan, M. Rahim, and N. Hassan, J. Mater. Sci. Mater. Electron. 29, 2209 (2018).CrossRef N.A. Khan, S.H. Safeer, M.N. Khan, M. Rahim, and N. Hassan, J. Mater. Sci. Mater. Electron. 29, 2209 (2018).CrossRef
30.
Zurück zum Zitat N. Hassan, B. Shabbir, and N.A. Khan, J. Appl. Phys. 105, 083926 (2009).CrossRef N. Hassan, B. Shabbir, and N.A. Khan, J. Appl. Phys. 105, 083926 (2009).CrossRef
31.
Zurück zum Zitat M. Irfan, N. Hassan, S.A. Manzoor, B. Shabbir, and N.A. Khan, J. Appl. Phys. 106, 113913 (2009).CrossRef M. Irfan, N. Hassan, S.A. Manzoor, B. Shabbir, and N.A. Khan, J. Appl. Phys. 106, 113913 (2009).CrossRef
32.
Zurück zum Zitat M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, T. Subhani, and R. Nazir, J. Supercond. Nov. Magn. 31, 1669 (2018).CrossRef M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, T. Subhani, and R. Nazir, J. Supercond. Nov. Magn. 31, 1669 (2018).CrossRef
33.
Zurück zum Zitat H. Ibach, and H. Luth, Solid State Physics: An Introduction to Theory and Experiment, 1st edn. (Berlin: Springer, 1991), p. 222.CrossRef H. Ibach, and H. Luth, Solid State Physics: An Introduction to Theory and Experiment, 1st edn. (Berlin: Springer, 1991), p. 222.CrossRef
34.
Zurück zum Zitat F. Ben Azzouz, M. Zouaoui, M. Annabi, and M. Ben Salem, Phys. Status Solidi Curr. Top. Solid State Phys. 3, 3048 (2006). F. Ben Azzouz, M. Zouaoui, M. Annabi, and M. Ben Salem, Phys. Status Solidi Curr. Top. Solid State Phys. 3, 3048 (2006).
35.
Zurück zum Zitat N.A. Khan, S.H. Safeer, M. Rahim, M.N. Khan, and N. Hassan, J. Supercond. Nov. Magn. 30, 1493 (2017).CrossRef N.A. Khan, S.H. Safeer, M. Rahim, M.N. Khan, and N. Hassan, J. Supercond. Nov. Magn. 30, 1493 (2017).CrossRef
36.
Zurück zum Zitat W. Gao, Q. Liu, L. Yang, Y. Yu, F. Li, X. Wang, J. Zhu, C. Jin, and S. Uchida, Physica C Supercond. 47, S19 (2010).CrossRef W. Gao, Q. Liu, L. Yang, Y. Yu, F. Li, X. Wang, J. Zhu, C. Jin, and S. Uchida, Physica C Supercond. 47, S19 (2010).CrossRef
37.
Zurück zum Zitat B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, and L.M. Mei, Sci. Rep. 6, 23044 (2016).CrossRef B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, and L.M. Mei, Sci. Rep. 6, 23044 (2016).CrossRef
38.
Zurück zum Zitat F. Ben-Azzouz, M. Zouaoui, M. Annabi, and M. Ben-Salem, Phys. Status Solidi Curr. Top. Solid State Phys. 3, 3048 (2006). F. Ben-Azzouz, M. Zouaoui, M. Annabi, and M. Ben-Salem, Phys. Status Solidi Curr. Top. Solid State Phys. 3, 3048 (2006).
39.
Zurück zum Zitat M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera Lopez, D.A. Landınez Tellez, and J. Roa Rojas, Phys. B Condens. Matter 398, 360 (2007).CrossRef M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera Lopez, D.A. Landınez Tellez, and J. Roa Rojas, Phys. B Condens. Matter 398, 360 (2007).CrossRef
40.
Zurück zum Zitat W. E. Lawrence and S. Doniach, Proceedings of the Twelfth International Conference on Low Temperature Physics, edited by Eizo Kanda (Keigaku, Tokyo) p. 361, (1971). W. E. Lawrence and S. Doniach, Proceedings of the Twelfth International Conference on Low Temperature Physics, edited by Eizo Kanda (Keigaku, Tokyo) p. 361, (1971).
41.
42.
Zurück zum Zitat A.I.A. Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, and A. Khalaf, J. Supercond. Nov. Magn. 23, 1325 (2010).CrossRef A.I.A. Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, and A. Khalaf, J. Supercond. Nov. Magn. 23, 1325 (2010).CrossRef
43.
Zurück zum Zitat N.A. Khan, M.N. Ashraf, and S.H. Safeer, J. Supercond. Nov. Magn. 29, 2253 (2016).CrossRef N.A. Khan, M.N. Ashraf, and S.H. Safeer, J. Supercond. Nov. Magn. 29, 2253 (2016).CrossRef
Metadaten
Titel
Study of Carrier Transfer Mechanism When Substituting Strontium at Barium Sites in CuTl-1223 Superconducting Phase
verfasst von
Syed Hamza Safeer
Ayesha Riaz
Nawazish A. Khan
Publikationsdatum
22.04.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 7/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08947-z

Weitere Artikel der Ausgabe 7/2021

Journal of Electronic Materials 7/2021 Zur Ausgabe

Neuer Inhalt