Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 4/2022

01.04.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Study of Heat Transfer Processes in a System Containing Fe–Rh Microwires

verfasst von: O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

To date, the choice of the geometry of a magnetic cooling cell is a relevant problem in the field of magnetic refrigeration. In this study, the heat transfer processes in three-dimensional magnetic cooling cells containing Fe–Rh microwires are studied within the theoretical simulation approaches. The velocities of heat carrier flow velocities of 2.5 and 0.7 m/s are considered. It is found that the relaxation times are 0.8 and 1.4 ms for a flow velocity of 2.5 m/s, and 1.8 and 3.3 ms for a flow velocity of 0.7 m/s in the case of using microwire diameters of 10 and 50 µm, respectively. It is shown that the use of Fe–Rh microwires in magnetic cooling cells can be promising for magnetic refrigeration technology.
Literatur
1.
Zurück zum Zitat A. Kitanovski and W. E. Peter, “Thermodynamics of magnetic refrigeration,” Int. J. Refrig. 29, 3–21 (2006). CrossRef A. Kitanovski and W. E. Peter, “Thermodynamics of magnetic refrigeration,” Int. J. Refrig. 29, 3–21 (2006). CrossRef
2.
Zurück zum Zitat V. K. Pecharsky, K. A. Gschneidner, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005). CrossRef V. K. Pecharsky, K. A. Gschneidner, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005). CrossRef
3.
Zurück zum Zitat A. Chirkova, K. P. Skokov, L. Schultz, and N. V. Baranov, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). CrossRef A. Chirkova, K. P. Skokov, L. Schultz, and N. V. Baranov, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). CrossRef
4.
Zurück zum Zitat S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148 (6), 363–366 (1990). CrossRef S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148 (6), 363–366 (1990). CrossRef
5.
Zurück zum Zitat V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014). CrossRef V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014). CrossRef
6.
Zurück zum Zitat V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014). V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014).
7.
Zurück zum Zitat A. Sarlah, J. Tusek, and A. Poredos, “Comparison of thermo-hydraulic properties of heat regenerators applicable to active magnetic refrigerators,” J. Mech. Eng. 58, 16–22 (2012). CrossRef A. Sarlah, J. Tusek, and A. Poredos, “Comparison of thermo-hydraulic properties of heat regenerators applicable to active magnetic refrigerators,” J. Mech. Eng. 58, 16–22 (2012). CrossRef
8.
Zurück zum Zitat K. K. Nielsen, C. R. H. Bahl, A. Smith, R. Bjork, N. Pryds, and J. Hattel, “Detailed numerical modeling of a linear parallel-plate active magnetic regenerator,” Int. J. Refrig. 32 (6), 1478–1486 (2009). CrossRef K. K. Nielsen, C. R. H. Bahl, A. Smith, R. Bjork, N. Pryds, and J. Hattel, “Detailed numerical modeling of a linear parallel-plate active magnetic regenerator,” Int. J. Refrig. 32 (6), 1478–1486 (2009). CrossRef
9.
Zurück zum Zitat K. Engelbrecht, J. Tusek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl, and A. Poredos, “Improved modeling of a parallel plate active magnetic regenerator,” J. Phys. D: Appl. Phys. 46 (25), 255002 (2013). CrossRef K. Engelbrecht, J. Tusek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl, and A. Poredos, “Improved modeling of a parallel plate active magnetic regenerator,” J. Phys. D: Appl. Phys. 46 (25), 255002 (2013). CrossRef
10.
Zurück zum Zitat S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloys Compd. 754, 207–214 (2018). CrossRef S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloys Compd. 754, 207–214 (2018). CrossRef
11.
Zurück zum Zitat K. K. Nielsen, J. Tusek, K. Engelbrecht, S. Schopfer, A. Kitanovski, C. R. H. Bahl, A. Smith, N. Pryds, and A. Poredos, “Review on numerical modeling of active magnetic regenerators for room temperature applications,” Int. J. Refrig. 34 (3), 603–616 (2011). CrossRef K. K. Nielsen, J. Tusek, K. Engelbrecht, S. Schopfer, A. Kitanovski, C. R. H. Bahl, A. Smith, N. Pryds, and A. Poredos, “Review on numerical modeling of active magnetic regenerators for room temperature applications,” Int. J. Refrig. 34 (3), 603–616 (2011). CrossRef
12.
Zurück zum Zitat M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Phys. Status Solidi A 208 (3), 493–501 (2011). CrossRef M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Phys. Status Solidi A 208 (3), 493–501 (2011). CrossRef
13.
Zurück zum Zitat M. I. Ilyn, V. Zhukova, J. D. Santos, M. L. Sanchez, V. M. Prida, B. Hernando, V. Larin, J. Gonzalez, A. M. Tishin, and A. Zhukov, “Magnetocaloric effect in nanogranular glass coated microwires,” Phys. Status Solidi A 205 (6), 1378–1381 (2008). CrossRef M. I. Ilyn, V. Zhukova, J. D. Santos, M. L. Sanchez, V. M. Prida, B. Hernando, V. Larin, J. Gonzalez, A. M. Tishin, and A. Zhukov, “Magnetocaloric effect in nanogranular glass coated microwires,” Phys. Status Solidi A 205 (6), 1378–1381 (2008). CrossRef
14.
Zurück zum Zitat A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” J. Alloys Compd. 575, 73–79 (2013). CrossRef A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” J. Alloys Compd. 575, 73–79 (2013). CrossRef
15.
Zurück zum Zitat V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic properties and MCE in Heusler-type glass-coated microwires,” J. Supercond. Nov. Magn. 26, 1415–1419 (2013). CrossRef V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic properties and MCE in Heusler-type glass-coated microwires,” J. Supercond. Nov. Magn. 26, 1415–1419 (2013). CrossRef
16.
Zurück zum Zitat O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Theoretical modeling of heat transfer processes in Ni–Co–Mn–In magnetic wires,” in Proceedings of the 7th International Conf. on Magnetic Refrigeration at Room Temperature (Thermag VII) (Turin, 2016), pp. 202–205. O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Theoretical modeling of heat transfer processes in Ni–Co–Mn–In magnetic wires,” in Proceedings of the 7th International Conf. on Magnetic Refrigeration at Room Temperature (Thermag VII) (Turin, 2016), pp. 202–205.
17.
Zurück zum Zitat O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Modeling of heat transfer processes in Ni2MnIn magnetic wires,” Phys. Status Solidi A 213 (2), 390–398 (2016). CrossRef O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Modeling of heat transfer processes in Ni2MnIn magnetic wires,” Phys. Status Solidi A 213 (2), 390–398 (2016). CrossRef
18.
Zurück zum Zitat O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, “Theoretical study of heat transfer processes in Heusler-type magnetic microwires,” Lett. Mater. 9 (4), 395–399 (2019). CrossRef O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, “Theoretical study of heat transfer processes in Heusler-type magnetic microwires,” Lett. Mater. 9 (4), 395–399 (2019). CrossRef
19.
Zurück zum Zitat O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximations (Wiley, New York, 1983). O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximations (Wiley, New York, 1983).
20.
Zurück zum Zitat O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Fluid Dynamics (Butterworth-Heinemann, London, 2000). O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Fluid Dynamics (Butterworth-Heinemann, London, 2000).
21.
Zurück zum Zitat E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1929), Vol. 5. E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1929), Vol. 5.
22.
Zurück zum Zitat Y. Hao, L. Zhang, and J. Zhu, “The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: high-temperature and high-pressure study,” Z. Naturforsch., A: Phys. Sci. 75 (9), 789–801 (2020). Y. Hao, L. Zhang, and J. Zhu, “The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: high-temperature and high-pressure study,” Z. Naturforsch., A: Phys. Sci. 75 (9), 789–801 (2020).
Metadaten
Titel
Study of Heat Transfer Processes in a System Containing Fe–Rh Microwires
verfasst von
O. O. Pavlukhina
V. V. Sokolovskiy
V. D. Buchelnikov
M. A. Zagrebin
Publikationsdatum
01.04.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040093

Weitere Artikel der Ausgabe 4/2022

Physics of Metals and Metallography 4/2022 Zur Ausgabe