Skip to main content
Erschienen in: Journal of Nanoparticle Research 9/2020

01.09.2020 | Research paper

Study of nickel-coated aluminum nanoparticles using molecular dynamic simulations and thermodynamic modeling

verfasst von: Mohit Singh, Srujan Kumar Naspoori, Vaibhav K. Arghode, Rakesh Kumar

Erschienen in: Journal of Nanoparticle Research | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum nanoparticles have widely been used as fuel additives to solid propellants for rocket propulsion, but the formation of the oxide layer has been a setback for their application. A viable solution to this problem is to passivate aluminum (Al) with a layer of nickel (Ni), which offers multiple advantages. The current study focuses on energetic intermetallic interaction within Ni-coated Al nanoparticles and also the interaction/coalescence between two Ni-coated Al nanoparticles of varying sizes. Molecular dynamics (MD) method is employed to study the size-dependent variation of these interactions.
A thermodynamic formulation is devised to calculate the adiabatic reaction temperature of single as well as coated nanoparticles. The results obtained using this formulation are compared with the results obtained from MD simulations. The estimation of dead layer thickness formed at the interface of Ni and Al is critical to correctly capture the energetic behavior. In this work, the dead layer thickness is estimated and used to predict the adiabatic reaction temperature of the coalescence of two equal-/unequal-sized Ni-coated Al nanoparticles. It has been found that particle size can affect the adiabatic reaction temperature because of the varying surface energy. It has also been found that the dead layer thickness plays a vital role in accurately determining the adiabatic reaction temperature of the system. It has been observed that the reaction time decreases proportionately with increase in specific reaction surface area (between Al and Ni) for single as well as coated particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. general method. J Chem Phys 31(2):459–466CrossRef Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. general method. J Chem Phys 31(2):459–466CrossRef
Zurück zum Zitat Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford
Zurück zum Zitat Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. Combust Flame 150(1-2):60–70CrossRef Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. Combust Flame 150(1-2):60–70CrossRef
Zurück zum Zitat Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116(9):3856–3863CrossRef Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116(9):3856–3863CrossRef
Zurück zum Zitat Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17):1285CrossRef Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17):1285CrossRef
Zurück zum Zitat DeLuca LT (2018) Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def Technol 14(5):357–365. SI: 2018 International Conference on Defence TechnologyCrossRef DeLuca LT (2018) Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def Technol 14(5):357–365. SI: 2018 International Conference on Defence TechnologyCrossRef
Zurück zum Zitat Foley TJ, Johnson CE, Higa KT (2005) Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 17(16):4086–4091CrossRef Foley TJ, Johnson CE, Higa KT (2005) Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 17(16):4086–4091CrossRef
Zurück zum Zitat Friedman R, Maček A (1962) Ignition and combustion of aluminium particles in hot ambient gases. Combust Flame 6:9–19CrossRef Friedman R, Maček A (1962) Ignition and combustion of aluminium particles in hot ambient gases. Combust Flame 6:9–19CrossRef
Zurück zum Zitat Hanyaloglu S, Aksakal B, McColm I (2001) Reactive sintering of electroless nickel-plated aluminum powders. Mater Charact 47(1):9–16CrossRef Hanyaloglu S, Aksakal B, McColm I (2001) Reactive sintering of electroless nickel-plated aluminum powders. Mater Charact 47(1):9–16CrossRef
Zurück zum Zitat Henz BJ, Hawa T, Zachariah M (2009) Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J Appl Phys 105(12):124310CrossRef Henz BJ, Hawa T, Zachariah M (2009) Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J Appl Phys 105(12):124310CrossRef
Zurück zum Zitat Kubaschewski O, Alcock CB, Spencer P (1993) Materials thermochemistry. Revised, Pergamon Press Ltd, Headington Hill Hall, Oxford OX 3 0 BW, UK, 1993 363 Kubaschewski O, Alcock CB, Spencer P (1993) Materials thermochemistry. Revised, Pergamon Press Ltd, Headington Hill Hall, Oxford OX 3 0 BW, UK, 1993 363
Zurück zum Zitat Leach AR, Leach AR (2001) Molecular modelling: principles and applications, Pearson education Leach AR, Leach AR (2001) Molecular modelling: principles and applications, Pearson education
Zurück zum Zitat Leitner M, Leitner T, Schmon A, Aziz K, Pottlacher G (2017) Thermophysical properties of liquid aluminum. Metall and Mater Trans A 48(6):3036–3045CrossRef Leitner M, Leitner T, Schmon A, Aziz K, Pottlacher G (2017) Thermophysical properties of liquid aluminum. Metall and Mater Trans A 48(6):3036–3045CrossRef
Zurück zum Zitat Lewis LJ, Jensen P, Barrat J-L (1997) Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56(4): 2248CrossRef Lewis LJ, Jensen P, Barrat J-L (1997) Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56(4): 2248CrossRef
Zurück zum Zitat Lozovoi AY, Alavi A, Finnis MW (2000) Surface stoichiometry and the initial oxidation of NiAl (110). Phys Rev Lett 85(3):610CrossRef Lozovoi AY, Alavi A, Finnis MW (2000) Surface stoichiometry and the initial oxidation of NiAl (110). Phys Rev Lett 85(3):610CrossRef
Zurück zum Zitat Miracle D (1993) Overview No. 104 the physical and mechanical properties of NiAl. Acta Metall Mater 41(3):649– 684CrossRef Miracle D (1993) Overview No. 104 the physical and mechanical properties of NiAl. Acta Metall Mater 41(3):649– 684CrossRef
Zurück zum Zitat Nizhenko VI (2004) Free surface energy as a criterion for the sequence of intermetallic layer formation in reaction couples. Powder Metall Met Ceram 43(5-6):273–279CrossRef Nizhenko VI (2004) Free surface energy as a criterion for the sequence of intermetallic layer formation in reaction couples. Powder Metall Met Ceram 43(5-6):273–279CrossRef
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef
Zurück zum Zitat Shafirovich E, Varma A (2004) Nickel-coated aluminum particles: a promising fuel for mars missions Shafirovich E, Varma A (2004) Nickel-coated aluminum particles: a promising fuel for mars missions
Zurück zum Zitat Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modeling and Simulation in Materials Science and Engineering 18 (1):015012–1-7CrossRef Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modeling and Simulation in Materials Science and Engineering 18 (1):015012–1-7CrossRef
Zurück zum Zitat Sundaram DS, Puri P, Yang V (2013) Thermochemical behavior of nickel-coated nanoaluminum particles. J Phys Chem C 117(15):7858–7869CrossRef Sundaram DS, Puri P, Yang V (2013) Thermochemical behavior of nickel-coated nanoaluminum particles. J Phys Chem C 117(15):7858–7869CrossRef
Zurück zum Zitat Sundaram DS, Yang V, Zarko VE (2015) Combustion of nano aluminum particles (Review), Combustion. Explo Shock Waves 51(2):173–196CrossRef Sundaram DS, Yang V, Zarko VE (2015) Combustion of nano aluminum particles (Review), Combustion. Explo Shock Waves 51(2):173–196CrossRef
Zurück zum Zitat Trunov MA, Schoenitz M, Dreizin EL (2006) Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theor Model 10(4):603–623CrossRef Trunov MA, Schoenitz M, Dreizin EL (2006) Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theor Model 10(4):603–623CrossRef
Zurück zum Zitat Yavor Y, Gany A (2008) Effect of nickel coating on aluminum combustion and agglomeration in solid propellants. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p 5255 Yavor Y, Gany A (2008) Effect of nickel coating on aluminum combustion and agglomeration in solid propellants. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p 5255
Metadaten
Titel
Study of nickel-coated aluminum nanoparticles using molecular dynamic simulations and thermodynamic modeling
verfasst von
Mohit Singh
Srujan Kumar Naspoori
Vaibhav K. Arghode
Rakesh Kumar
Publikationsdatum
01.09.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 9/2020
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-020-04979-4

Weitere Artikel der Ausgabe 9/2020

Journal of Nanoparticle Research 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.