Skip to main content

10.02.2025 | Original Paper

Study of phasor measurement unit placement in wide area monitoring system of radial distribution network using oppositional-based artificial rabbit optimization

verfasst von: Sneha Sultana, Sourav Paul, Provas Kumar Roy

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a new metaheuristic bioinspired technique oppositional artificial rabbit optimization (OARO) technique is enhanced and employed, for phasor measurement unit (PMU) placement in distribution system. Based on PMUs, this study emphasizes their advantages for real-time monitoring. Quite differently, the PMU serves as the system’s cornerstone. The goal of this kind of technology is to analyse data quickly and automatically arrive at a decision. Four scenarios are taken into consideration in the simulation study for each test system, and the goal is to minimize costs while taking into account fewer PMU. The first case focuses primarily on the number of PMU set as the objective function; the second case uses the wide area monitoring system (WAMS) data traffic index and installation cost to observe comprehensive observability. The third case focuses on how many PMU are used in conjunction with zero injection bus (ZIB). Finally, ZIB and WAMS are implemented together to reduce data traffic and, eventually, the fitness function. There is artificial rabbit optimization (ARO), inspired by the survival of rabbits, such as detour foraging and random hiding. The behaviour of the rabbits in random searching for food in other region neglecting its own region followed by random hiding amongst all borrowings to reduce the chances for the predators to search them to kill. In this study, an oppositional strategy of rabbits’ finding the tunnels is applied for finding the food search space. In addition, the rabbit energy shrink strategy is implemented to transmit rabbits from detour foraging and random hiding. The concept of oppositional-based learning applied to rabbit survival strategy has been mathematically modelled and tested in PMU placement problems in the radial distribution system. The methods are evaluated in radial distribution systems with 33, 69, 85, 118, and 141 buses. In each case, it is found that OARO provides better results on PMU placement for phasor measurement of voltage and current in radial distribution systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rashidi M, Farjah E (2016) Lyapunov exponent-based optimal PMU placement approach with application to transient stability assessment. IET Sci, Meas Technol 10(5):492–497CrossRefMATH Rashidi M, Farjah E (2016) Lyapunov exponent-based optimal PMU placement approach with application to transient stability assessment. IET Sci, Meas Technol 10(5):492–497CrossRefMATH
2.
Zurück zum Zitat Abdelaziz AY, Ibrahim AM, Salem RH (2013) Power system observability with minimum phasor measurement units placement. Int J Eng Sci Technol 5(3):1–18CrossRefMATH Abdelaziz AY, Ibrahim AM, Salem RH (2013) Power system observability with minimum phasor measurement units placement. Int J Eng Sci Technol 5(3):1–18CrossRefMATH
3.
Zurück zum Zitat Haridas RP (2015) Gps based phasor technology in electrical power system. Int J Electron Electr Eng 3(6):493–496MATH Haridas RP (2015) Gps based phasor technology in electrical power system. Int J Electron Electr Eng 3(6):493–496MATH
4.
Zurück zum Zitat Ghadikolaee ET, Kazemi A, Shayanfar HA (2020) Novel multi-objective phasor measurement unit placement for improved parallel state estimation in distribution network. Appl Energy 279:115814CrossRef Ghadikolaee ET, Kazemi A, Shayanfar HA (2020) Novel multi-objective phasor measurement unit placement for improved parallel state estimation in distribution network. Appl Energy 279:115814CrossRef
5.
Zurück zum Zitat Shiv S, Yadav KB, Priyadarshi A, Rathore V (2021) Study of phasor measurement unit and its applications. In: Recent advances in power systems: select proceedings of EPREC 2020, pp 247–257. Springer Shiv S, Yadav KB, Priyadarshi A, Rathore V (2021) Study of phasor measurement unit and its applications. In: Recent advances in power systems: select proceedings of EPREC 2020, pp 247–257. Springer
6.
Zurück zum Zitat Tiwari S, Kumar A (2023) Hybrid Taguchi-based technique for micro-phasor measurement units placement in the grid-connected distribution system. IETE J Res 69(8):5412–5424CrossRefMATH Tiwari S, Kumar A (2023) Hybrid Taguchi-based technique for micro-phasor measurement units placement in the grid-connected distribution system. IETE J Res 69(8):5412–5424CrossRefMATH
7.
Zurück zum Zitat Dusabimana E, Yoon S-G (2020) A survey on the micro-phasor measurement unit in distribution networks. Electronics 9(2):305CrossRefMATH Dusabimana E, Yoon S-G (2020) A survey on the micro-phasor measurement unit in distribution networks. Electronics 9(2):305CrossRefMATH
8.
Zurück zum Zitat Save N, Popov M, Jongepier A, Rietveld G (2017) PMU-based power system analysis of a medium-voltage distribution grid. CIRED-Open Access Proc J 2017(1):1927–1930CrossRef Save N, Popov M, Jongepier A, Rietveld G (2017) PMU-based power system analysis of a medium-voltage distribution grid. CIRED-Open Access Proc J 2017(1):1927–1930CrossRef
9.
Zurück zum Zitat Li J, Tianguang L, Yi X, Hao R, Qian Ai Yu, Guo MA, Wang S, He X, Li Y (2024) Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance. Renew Energy 226:120089CrossRef Li J, Tianguang L, Yi X, Hao R, Qian Ai Yu, Guo MA, Wang S, He X, Li Y (2024) Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance. Renew Energy 226:120089CrossRef
10.
Zurück zum Zitat Li J, Tianguang L, Yi X, An M, Hao R (2024) Energy systems capacity planning under high renewable penetration considering concentrating solar power. Sustain Energy Technol Assess 64:103671 Li J, Tianguang L, Yi X, An M, Hao R (2024) Energy systems capacity planning under high renewable penetration considering concentrating solar power. Sustain Energy Technol Assess 64:103671
11.
Zurück zum Zitat Majidi M, Arabali A, Etezadi-Amoli M (2014) Fault location in distribution networks by compressive sensing. IEEE Trans Power Deliv 30(4):1761–1769CrossRef Majidi M, Arabali A, Etezadi-Amoli M (2014) Fault location in distribution networks by compressive sensing. IEEE Trans Power Deliv 30(4):1761–1769CrossRef
12.
Zurück zum Zitat Eladl AA, Sheta AN, Saeed MA, Abido MA, Hassan MA (2022) Optimal allocation of phasor measurement units in distribution power systems. Alex Eng J 61(10):8039–8049CrossRef Eladl AA, Sheta AN, Saeed MA, Abido MA, Hassan MA (2022) Optimal allocation of phasor measurement units in distribution power systems. Alex Eng J 61(10):8039–8049CrossRef
13.
Zurück zum Zitat Theodorakatos NP, Manousakis NM, Korres GN (2014) Optimal placement of PMUS in power systems using binary integer programming and genetic algorithm. In: MedPower 2014, pp 1–6. IET Theodorakatos NP, Manousakis NM, Korres GN (2014) Optimal placement of PMUS in power systems using binary integer programming and genetic algorithm. In: MedPower 2014, pp 1–6. IET
14.
Zurück zum Zitat Chen X, Sun L, Chen T, Sun Y, Rusli Tseng KJ, Ling KV, Ho WK, Amaratunga GAJ (2019) Full coverage of optimal phasor measurement unit placement solutions in distribution systems using integer linear programming. Energies 12(8):1552CrossRefMATH Chen X, Sun L, Chen T, Sun Y, Rusli Tseng KJ, Ling KV, Ho WK, Amaratunga GAJ (2019) Full coverage of optimal phasor measurement unit placement solutions in distribution systems using integer linear programming. Energies 12(8):1552CrossRefMATH
15.
Zurück zum Zitat Seyed-Ehsan R, Hamid F, Chanan S, Jamshid A, Ali Esmaeel N (2019) A novel linear framework for phasor measurement unit placement considering the effect of adjacent zero-injection buses. Measurement 133:532–540CrossRefMATH Seyed-Ehsan R, Hamid F, Chanan S, Jamshid A, Ali Esmaeel N (2019) A novel linear framework for phasor measurement unit placement considering the effect of adjacent zero-injection buses. Measurement 133:532–540CrossRefMATH
16.
Zurück zum Zitat Nikkhah S, Aghaei J, Safarinejadian B, Norouzi M-A (2018) Contingency constrained phasor measurement units placement with n-k redundancy criterion: a robust optimisation approach. IET Sci, Meas Technol 12(2):151–160CrossRefMATH Nikkhah S, Aghaei J, Safarinejadian B, Norouzi M-A (2018) Contingency constrained phasor measurement units placement with n-k redundancy criterion: a robust optimisation approach. IET Sci, Meas Technol 12(2):151–160CrossRefMATH
17.
Zurück zum Zitat Noureen SS, Roy V, Bayne SB (2017) Phasor measurement unit integration: a review on optimal PMU placement methods in power system. In: 2017 IEEE region 10 humanitarian technology conference (R10-HTC), pp 328–332. IEEE Noureen SS, Roy V, Bayne SB (2017) Phasor measurement unit integration: a review on optimal PMU placement methods in power system. In: 2017 IEEE region 10 humanitarian technology conference (R10-HTC), pp 328–332. IEEE
18.
Zurück zum Zitat Ramasamy S, Koodalsamy B, Koodalsamy C, Veerayan MB (2021) Realistic method for placement of phasor measurement units through optimization problem formulation with conflicting objectives. Electr Power Compon Syst 49(4–5):474–487CrossRef Ramasamy S, Koodalsamy B, Koodalsamy C, Veerayan MB (2021) Realistic method for placement of phasor measurement units through optimization problem formulation with conflicting objectives. Electr Power Compon Syst 49(4–5):474–487CrossRef
19.
Zurück zum Zitat Baba M, Nor NBM, Sheikh MA, Baba AM, Irfan M, Glowacz A, Kozik J, Kumar A (2021) Optimization of phasor measurement unit placement using several proposed case factors for power network monitoring. Energies 14(18):5596CrossRef Baba M, Nor NBM, Sheikh MA, Baba AM, Irfan M, Glowacz A, Kozik J, Kumar A (2021) Optimization of phasor measurement unit placement using several proposed case factors for power network monitoring. Energies 14(18):5596CrossRef
20.
Zurück zum Zitat Kumar S, Tyagi B, Kumar V, Chohan S (2020) Optimization of phasor measurement units placement under contingency using reliability of network components. IEEE Trans Instrum Meas 69(12):9893–9906CrossRefMATH Kumar S, Tyagi B, Kumar V, Chohan S (2020) Optimization of phasor measurement units placement under contingency using reliability of network components. IEEE Trans Instrum Meas 69(12):9893–9906CrossRefMATH
21.
Zurück zum Zitat Hajian M, Ranjbar AM, Amraee T, Shirani AR (2007) Optimal placement of phasor measurement units: particle swarm optimization approach. In: 2007 International conference on intelligent systems applications to power systems, pp 1–6. IEEE Hajian M, Ranjbar AM, Amraee T, Shirani AR (2007) Optimal placement of phasor measurement units: particle swarm optimization approach. In: 2007 International conference on intelligent systems applications to power systems, pp 1–6. IEEE
22.
Zurück zum Zitat Zahra M, Vahid B, Sajad B (2015) Optimal PMU placement for power system using binary cuckoo search algorithm. Int Acad J Innov Res 2(10):8–9MATH Zahra M, Vahid B, Sajad B (2015) Optimal PMU placement for power system using binary cuckoo search algorithm. Int Acad J Innov Res 2(10):8–9MATH
23.
Zurück zum Zitat Enshaee A, Hooshmand RA, Fesharaki FH (2012) A new method for optimal placement of phasor measurement units to maintain full network observability under various contingencies. Electr Power Syst Res 89:1–10CrossRefMATH Enshaee A, Hooshmand RA, Fesharaki FH (2012) A new method for optimal placement of phasor measurement units to maintain full network observability under various contingencies. Electr Power Syst Res 89:1–10CrossRefMATH
24.
Zurück zum Zitat Marzieh S, Mohd R (2019) Optimal PMU placement in a smart grid: an updated review. Int J Smart Grid Clean Energy 8:59–69MATH Marzieh S, Mohd R (2019) Optimal PMU placement in a smart grid: an updated review. Int J Smart Grid Clean Energy 8:59–69MATH
25.
Zurück zum Zitat Chakrabarti S, Kyriakides E (2008) Optimal placement of phasor measurement units for power system observability. IEEE Trans Power Syst 23(3):1433–1440CrossRefMATH Chakrabarti S, Kyriakides E (2008) Optimal placement of phasor measurement units for power system observability. IEEE Trans Power Syst 23(3):1433–1440CrossRefMATH
26.
Zurück zum Zitat Koutsoukis NC, Manousakis NM, Georgilakis PS, Korres GN (2013) Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method. IET Gener Trans Distrib 7(4):347–356CrossRef Koutsoukis NC, Manousakis NM, Georgilakis PS, Korres GN (2013) Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method. IET Gener Trans Distrib 7(4):347–356CrossRef
27.
Zurück zum Zitat Mandava S, Vanishree J, Ramesh V (2015) A spanning tree approach in placing multi-channel and minimum channel PMU’s for power system observability. Int J Electr Comput Eng 5(3):518 Mandava S, Vanishree J, Ramesh V (2015) A spanning tree approach in placing multi-channel and minimum channel PMU’s for power system observability. Int J Electr Comput Eng 5(3):518
28.
Zurück zum Zitat Milosevic B, Begovic M (2003) Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Trans Power Syst 18(1):69–75CrossRefMATH Milosevic B, Begovic M (2003) Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Trans Power Syst 18(1):69–75CrossRefMATH
29.
Zurück zum Zitat Aminifar F, Lucas C, Khodaei A, Fotuhi-Firuzabad M (2009) Optimal placement of phasor measurement units using immunity genetic algorithm. IEEE Trans Power Deliv 24(3):1014–1020CrossRefMATH Aminifar F, Lucas C, Khodaei A, Fotuhi-Firuzabad M (2009) Optimal placement of phasor measurement units using immunity genetic algorithm. IEEE Trans Power Deliv 24(3):1014–1020CrossRefMATH
30.
Zurück zum Zitat Bo W, Dichen L, Xiong L (2009) An improved ant colony system in optimizing power system PMU placement problem. In: 2009 asia-pacific power and energy engineering conference, pp 1–3. IEEE Bo W, Dichen L, Xiong L (2009) An improved ant colony system in optimizing power system PMU placement problem. In: 2009 asia-pacific power and energy engineering conference, pp 1–3. IEEE
31.
Zurück zum Zitat Peppanen J, Alquthami T, Molina D, Harley R (2012) Optimal PMU placement with binary PSO. In: 2012 IEEE energy conversion congress and exposition (ECCE), pp 1475–1482. IEEE Peppanen J, Alquthami T, Molina D, Harley R (2012) Optimal PMU placement with binary PSO. In: 2012 IEEE energy conversion congress and exposition (ECCE), pp 1475–1482. IEEE
32.
Zurück zum Zitat Tangi S, Gaonkar DN (2021) Optimal phasor measurement units placement in radial distribution networks using integer linear programming. In: Computer networks and inventive communication technologies: proceedings of third ICCNCT 2020, pp 1021–1031. Springer Tangi S, Gaonkar DN (2021) Optimal phasor measurement units placement in radial distribution networks using integer linear programming. In: Computer networks and inventive communication technologies: proceedings of third ICCNCT 2020, pp 1021–1031. Springer
33.
Zurück zum Zitat Arefi A, Haghifam M-R, Fathi S-H, Behi B, Razavi SE, Jennings P(2019) Optimal probabilistic PMU placement in electric distribution system state estimation. In: 2019 IEEE 10th international workshop on applied measurements for power systems (AMPS), pp 1–6. IEEE Arefi A, Haghifam M-R, Fathi S-H, Behi B, Razavi SE, Jennings P(2019) Optimal probabilistic PMU placement in electric distribution system state estimation. In: 2019 IEEE 10th international workshop on applied measurements for power systems (AMPS), pp 1–6. IEEE
34.
Zurück zum Zitat Ghorai A, Mandal B, Roy PK, Paul C (2024) Oppositional based artificial rabbits optimization applied for optimal allocation of nonlinear dg in distribution networks considering total harmonic distortion limit. Electr Power Syst Res 231:110334CrossRef Ghorai A, Mandal B, Roy PK, Paul C (2024) Oppositional based artificial rabbits optimization applied for optimal allocation of nonlinear dg in distribution networks considering total harmonic distortion limit. Electr Power Syst Res 231:110334CrossRef
35.
Zurück zum Zitat Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W (2022) Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 114:105082CrossRefMATH Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W (2022) Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 114:105082CrossRefMATH
36.
Zurück zum Zitat Khalid HM, Flitti F, Mahmoud MS, Hamdan MM, Muyeen SM, Dong ZY (2023) Wide area monitoring system operations in modern power grids: a median regression function-based state estimation approach towards cyber attacks. Sustain Energy, Grids Netw 34:101009 Khalid HM, Flitti F, Mahmoud MS, Hamdan MM, Muyeen SM, Dong ZY (2023) Wide area monitoring system operations in modern power grids: a median regression function-based state estimation approach towards cyber attacks. Sustain Energy, Grids Netw 34:101009
37.
Zurück zum Zitat Gou B (2008) Generalized integer linear programming formulation for optimal PMU placement. IEEE Trans Power Syst 23(3):1099–1104CrossRefMATH Gou B (2008) Generalized integer linear programming formulation for optimal PMU placement. IEEE Trans Power Syst 23(3):1099–1104CrossRefMATH
38.
Zurück zum Zitat Mabaning AAG, Orillaza JRC (2016) Complete solution of optimal PMU placement using reduced exhaustive search. In: 2016 IEEE region 10 conference (TENCON), pp 823–826. IEEE Mabaning AAG, Orillaza JRC (2016) Complete solution of optimal PMU placement using reduced exhaustive search. In: 2016 IEEE region 10 conference (TENCON), pp 823–826. IEEE
39.
Zurück zum Zitat North American Electric Reliability Corporation (NERC). Real-time application of synchrophasors for improving reliability (2010) North American Electric Reliability Corporation (NERC). Real-time application of synchrophasors for improving reliability (2010)
40.
Zurück zum Zitat Meenakshi M, Devi Geethanjali M (2020) Hybrid of genetic algorithm and minimum spanning tree method for optimal PMU placements. Measurement 154:107476CrossRefMATH Meenakshi M, Devi Geethanjali M (2020) Hybrid of genetic algorithm and minimum spanning tree method for optimal PMU placements. Measurement 154:107476CrossRefMATH
41.
Zurück zum Zitat Firestone CZ, Warren WH (2010) Why does the rabbit escape the fox on a zig-zag path? Predator-prey dynamics and the constant bearing strategy. J Vis 10(7):1049–1049CrossRefMATH Firestone CZ, Warren WH (2010) Why does the rabbit escape the fox on a zig-zag path? Predator-prey dynamics and the constant bearing strategy. J Vis 10(7):1049–1049CrossRefMATH
42.
Zurück zum Zitat Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRefMATH Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRefMATH
43.
Zurück zum Zitat Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701. IEEE Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701. IEEE
44.
Zurück zum Zitat Teng J-H (2003) A direct approach for distribution system load flow solutions. IEEE Trans Power Deliv 18(3):882–887CrossRefMATH Teng J-H (2003) A direct approach for distribution system load flow solutions. IEEE Trans Power Deliv 18(3):882–887CrossRefMATH
45.
Zurück zum Zitat Pooya R, Mehdi V (2010) Distribution system efficiency improvement by reconfiguration and capacitor placement using a modified particle swarm optimization algorithm. In: 2010 IEEE electrical power & energy conference, pp 1–6. IEEE Pooya R, Mehdi V (2010) Distribution system efficiency improvement by reconfiguration and capacitor placement using a modified particle swarm optimization algorithm. In: 2010 IEEE electrical power & energy conference, pp 1–6. IEEE
46.
Zurück zum Zitat Sahoo NC, Prasad K (2006) A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems. Energy Convers Manage 47(18–19):3288–3306CrossRefMATH Sahoo NC, Prasad K (2006) A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems. Energy Convers Manage 47(18–19):3288–3306CrossRefMATH
47.
Zurück zum Zitat Rahman NHA, Zobaa AF (2016) Optimal PMU placement using topology transformation method in power systems. J Adv Res 7(5):625–634 Rahman NHA, Zobaa AF (2016) Optimal PMU placement using topology transformation method in power systems. J Adv Res 7(5):625–634
48.
Zurück zum Zitat Das D (2008) Optimal placement of capacitors in radial distribution system using a Fuzzy-GA method. Int J Electr Power Energy Syst 30(6–7):361–367CrossRefMATH Das D (2008) Optimal placement of capacitors in radial distribution system using a Fuzzy-GA method. Int J Electr Power Energy Syst 30(6–7):361–367CrossRefMATH
49.
Zurück zum Zitat Zhang D, Zhengcai F, Zhang L (2007) An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr Power Syst Res 77(5–6):685–694CrossRefMATH Zhang D, Zhengcai F, Zhang L (2007) An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr Power Syst Res 77(5–6):685–694CrossRefMATH
Metadaten
Titel
Study of phasor measurement unit placement in wide area monitoring system of radial distribution network using oppositional-based artificial rabbit optimization
verfasst von
Sneha Sultana
Sourav Paul
Provas Kumar Roy
Publikationsdatum
10.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02968-1