Skip to main content

16.12.2024 | Original Article

Study of steady two-dimensional advection–diffusion equation with stratification using second-kind shifted Chebyshev polynomials

verfasst von: Sumit Sen, Koeli Ghoshal, Jaan H. Pu

Erschienen in: Engineering with Computers

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the steady two-dimensional (2D) distribution of suspended sediment concentration in an open channel turbulent flow, utilizing five eddy viscosity profiles incorporating the stratification effect. In addition to three well-known eddy viscosity profiles, two recently proposed profiles, based on the concepts of velocity and length scale concepts, are also considered. The most realistic bottom boundary condition is taken, where the net flux is a function of deposition velocity and equilibrium bottom concentration. The steady 2D transport equation is solved using the collocation method with second-kind shifted Chebyshev polynomials. The spectral radius of the scheme’s iteration matrix is found to be less than unity, ensuring convergence regardless of inlet concentration, downstream position or eddy viscosity profiles. Furthermore, it is observed that the sum of squared residual errors (SSRE) decreases to zero as the number of second-kind shifted Chebyshev polynomials increases, confirming the accuracy of the method. Although the focus is given on second-kind shifted Chebyshev polynomials, comparisons are made with other kinds (first, third and fourth) in solving the governing equation. The effect of stratification on concentration profiles is analyzed through the stratification correction parameter and it is found that the inclusion of the effect reduces sediment concentration when the inlet concentration is zero. Conversely, for uniform inlet concentration, the concentration increases near the inlet but decreases as the downstream distance increases. The sensitivity of the inverse turbulent Schmidt number on vertical sediment concentration is also examined at various downstream positions. Finally, the solution is validated against existing solutions, laboratory data and field measurements from the Rio Grande conveyance channel, Missouri River and Mississippi River.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Absi R (2021) Reinvestigating the parabolic-shaped eddy viscosity profile for free surface flows. Hydrology 8(3):126CrossRef Absi R (2021) Reinvestigating the parabolic-shaped eddy viscosity profile for free surface flows. Hydrology 8(3):126CrossRef
2.
Zurück zum Zitat Bose SK, Dey S (2013) Sediment entrainment probability and threshold of sediment suspension: exponential-based approach. J Hydraul Eng 139(10):1099–1106CrossRef Bose SK, Dey S (2013) Sediment entrainment probability and threshold of sediment suspension: exponential-based approach. J Hydraul Eng 139(10):1099–1106CrossRef
3.
Zurück zum Zitat Boyd JP (2001) Chebyshev and Fourier spectral methods. Courier Corporation, New York Boyd JP (2001) Chebyshev and Fourier spectral methods. Courier Corporation, New York
4.
Zurück zum Zitat Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189CrossRef Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189CrossRef
5.
Zurück zum Zitat Cantero-Chinchilla FN, Castro-Orgaz O, Dey S (2016) Distribution of suspended sediment concentration in wide sediment-laden streams: a novel power-law theory. Sedimentology 63(6):1620–1633CrossRef Cantero-Chinchilla FN, Castro-Orgaz O, Dey S (2016) Distribution of suspended sediment concentration in wide sediment-laden streams: a novel power-law theory. Sedimentology 63(6):1620–1633CrossRef
6.
Zurück zum Zitat Cellino M, Graf W (1999) Sediment-laden flow in open-channels under noncapacity and capacity conditions. J Hydraul Eng 125(5):455–462CrossRef Cellino M, Graf W (1999) Sediment-laden flow in open-channels under noncapacity and capacity conditions. J Hydraul Eng 125(5):455–462CrossRef
7.
Zurück zum Zitat Cheng KJ (1984) Bottom-boundary condition for nonequilibrium transport of sediment. J Geophys Res Oceans 89(C5):8209–8214CrossRef Cheng KJ (1984) Bottom-boundary condition for nonequilibrium transport of sediment. J Geophys Res Oceans 89(C5):8209–8214CrossRef
8.
Zurück zum Zitat Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods: fundamentals in single domains. Springer, BerlinCrossRef Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods: fundamentals in single domains. Springer, BerlinCrossRef
9.
Zurück zum Zitat Coleman NL (1970) Flume studies of the sediment transfer coefficient. Water Resour Res 6(3):801–809CrossRef Coleman NL (1970) Flume studies of the sediment transfer coefficient. Water Resour Res 6(3):801–809CrossRef
11.
Zurück zum Zitat Dastjerdi HL, Ghaini FM (2012) Numerical solution of Volterra–Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl Math Model 36(7):3283–3288MathSciNetCrossRef Dastjerdi HL, Ghaini FM (2012) Numerical solution of Volterra–Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl Math Model 36(7):3283–3288MathSciNetCrossRef
12.
Zurück zum Zitat Einstein HA, Chien N (1955) Effect of heavy sediment concentration near the bed on velocity and sediment distribution, vol 33. University of California, Berkeley Einstein HA, Chien N (1955) Effect of heavy sediment concentration near the bed on velocity and sediment distribution, vol 33. University of California, Berkeley
13.
Zurück zum Zitat Graf W, Cellino M (2002) Suspension flows in open channels; experimental study. J Hydraul Res 40(4):435–447CrossRef Graf W, Cellino M (2002) Suspension flows in open channels; experimental study. J Hydraul Res 40(4):435–447CrossRef
14.
Zurück zum Zitat Gelfenbaum G, Smith JD (1986) Experimental evaluation of a generalized suspended-sediment transport theory, in Shelf Sands and Sandstones, edited by R. J. Knight and J. R. Mclean, pp. 133–144, Canadian Society of Petroleum Geologists Memoir II, Calgary, Alberta, Canada Gelfenbaum G, Smith JD (1986) Experimental evaluation of a generalized suspended-sediment transport theory, in Shelf Sands and Sandstones, edited by R. J. Knight and J. R. Mclean, pp. 133–144, Canadian Society of Petroleum Geologists Memoir II, Calgary, Alberta, Canada
15.
Zurück zum Zitat Horng I-R, Chou J-H (1985) Shifted chebyshev direct method for solving variational problems. Int J Syst Sci 16(7):855–861MathSciNetCrossRef Horng I-R, Chou J-H (1985) Shifted chebyshev direct method for solving variational problems. Int J Syst Sci 16(7):855–861MathSciNetCrossRef
16.
Zurück zum Zitat Herrmann JM (2004) Effect of stratification due to suspended sediment on velocity and concentration distribution in turbulent flows. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, United States Herrmann JM (2004) Effect of stratification due to suspended sediment on velocity and concentration distribution in turbulent flows. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, United States
17.
Zurück zum Zitat Hjelmfelt AT, Lenau CW (1970) Nonequilibrium transport of suspended sediment. J Hydraul Div 96(7):1567–1586CrossRef Hjelmfelt AT, Lenau CW (1970) Nonequilibrium transport of suspended sediment. J Hydraul Div 96(7):1567–1586CrossRef
18.
Zurück zum Zitat Herrmann MJ, Madsen OS (2007) Effect of stratification due to suspended sand on velocity and concentration distribution in unidirectional flows. J Geophys Res Oceans 112:C02006 Herrmann MJ, Madsen OS (2007) Effect of stratification due to suspended sand on velocity and concentration distribution in unidirectional flows. J Geophys Res Oceans 112:C02006
19.
Zurück zum Zitat Hassani H, Machado JT, Naraghirad E (2019) Generalized shifted chebyshev polynomials for fractional optimal control problems. Commun Nonlinear Sci Numer Simul 75:50–61MathSciNetCrossRef Hassani H, Machado JT, Naraghirad E (2019) Generalized shifted chebyshev polynomials for fractional optimal control problems. Commun Nonlinear Sci Numer Simul 75:50–61MathSciNetCrossRef
20.
Zurück zum Zitat Hossain S, Singh G, Dhar A, Ghoshal K (2022) Generalized non-equilibrium suspended sediment transport model with hindered settling effect for open channel flows. J Hydrol 612:128145CrossRef Hossain S, Singh G, Dhar A, Ghoshal K (2022) Generalized non-equilibrium suspended sediment transport model with hindered settling effect for open channel flows. J Hydrol 612:128145CrossRef
21.
Zurück zum Zitat Hossain S, Sen S, Ghoshal K, Dhar A (2023) Combined impact of density stratification and hindered settling on nonequilibrium suspended sediment transport in open channel flows. J Hydrol Eng 28(8):04023023CrossRef Hossain S, Sen S, Ghoshal K, Dhar A (2023) Combined impact of density stratification and hindered settling on nonequilibrium suspended sediment transport in open channel flows. J Hydrol Eng 28(8):04023023CrossRef
22.
Zurück zum Zitat Hunt J (1954) The turbulent transport of suspended sediment in open channels. Proc R Soc Lond Ser A Math Phys Sci 224(1158):322–335 Hunt J (1954) The turbulent transport of suspended sediment in open channels. Proc R Soc Lond Ser A Math Phys Sci 224(1158):322–335
23.
Zurück zum Zitat Jing H, Chen G, Wang W, Li G (2018) Effects of concentration-dependent settling velocity on non-equilibrium transport of suspended sediment. Environ Earth Sci 77(15):1–10CrossRef Jing H, Chen G, Wang W, Li G (2018) Effects of concentration-dependent settling velocity on non-equilibrium transport of suspended sediment. Environ Earth Sci 77(15):1–10CrossRef
24.
Zurück zum Zitat Jobson HE, Sayre WW (1970) Vertical transfer in open channel flow. J Hydraul Div 96(3):703–724CrossRef Jobson HE, Sayre WW (1970) Vertical transfer in open channel flow. J Hydraul Div 96(3):703–724CrossRef
25.
Zurück zum Zitat Kundu S, Ghoshal K (2021) Effects of non-locality on unsteady nonequilibrium sediment transport in turbulent flows: a study using space fractional ade with fractional divergence. Appl Math Model 96:617–644MathSciNetCrossRef Kundu S, Ghoshal K (2021) Effects of non-locality on unsteady nonequilibrium sediment transport in turbulent flows: a study using space fractional ade with fractional divergence. Appl Math Model 96:617–644MathSciNetCrossRef
26.
Zurück zum Zitat Khader M (2011) On the numerical solutions for the fractional diffusion equation. Commun Nonlinear Sci Numer Simul 16(6):2535–2542MathSciNetCrossRef Khader M (2011) On the numerical solutions for the fractional diffusion equation. Commun Nonlinear Sci Numer Simul 16(6):2535–2542MathSciNetCrossRef
27.
Zurück zum Zitat Kumbhakar M, Mohan S, Ghoshal K, Kumar J, Singh VP (2022) Semianalytical solution for nonequilibrium suspended sediment transport in open channels with concentration-dependent settling velocity. J Hydrol Eng 27(2):04021048CrossRef Kumbhakar M, Mohan S, Ghoshal K, Kumar J, Singh VP (2022) Semianalytical solution for nonequilibrium suspended sediment transport in open channels with concentration-dependent settling velocity. J Hydrol Eng 27(2):04021048CrossRef
28.
Zurück zum Zitat Kovacs A (1998) Prandtl’s mixing length concept modified for equilibrium sediment-laden flows. J Hydraul Eng 124(8):803–812CrossRef Kovacs A (1998) Prandtl’s mixing length concept modified for equilibrium sediment-laden flows. J Hydraul Eng 124(8):803–812CrossRef
29.
Zurück zum Zitat Kundu S (2018) Suspension concentration distribution in turbulent flows: an analytical study using fractional advection–diffusion equation. Phys A Stat Mech Appl 506:135–155MathSciNetCrossRef Kundu S (2018) Suspension concentration distribution in turbulent flows: an analytical study using fractional advection–diffusion equation. Phys A Stat Mech Appl 506:135–155MathSciNetCrossRef
30.
Zurück zum Zitat Kundu S (2022) Study of unsteady nonequilibrium stratified suspended sediment distribution in open-channel turbulent flows using shifted chebyshev polynomials. ISH J Hydraul Eng 28(1):42–52CrossRef Kundu S (2022) Study of unsteady nonequilibrium stratified suspended sediment distribution in open-channel turbulent flows using shifted chebyshev polynomials. ISH J Hydraul Eng 28(1):42–52CrossRef
31.
Zurück zum Zitat Liu X (2016) Analytical solutions for steady two-dimensional suspended sediment transport in channels with arbitrary advection velocity and eddy diffusivity distributions. J Hydraul Res 54(4):389–398CrossRef Liu X (2016) Analytical solutions for steady two-dimensional suspended sediment transport in channels with arbitrary advection velocity and eddy diffusivity distributions. J Hydraul Res 54(4):389–398CrossRef
32.
Zurück zum Zitat Lyn D (1988) A similarity approach to turbulent sediment-laden flows in open channels. J Fluid Mech 193:1–26CrossRef Lyn D (1988) A similarity approach to turbulent sediment-laden flows in open channels. J Fluid Mech 193:1–26CrossRef
33.
Zurück zum Zitat Mason JC (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. J Comput Appl Math 49(1–3):169–178MathSciNetCrossRef Mason JC (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. J Comput Appl Math 49(1–3):169–178MathSciNetCrossRef
34.
Zurück zum Zitat Majumdar H, Carstens MR (1967) Diffusion of particles by turbulence: effect of particle size. Water Resources Center, Georgia Inst Technol Rep WRC-0967, Dec 1967. 102 p, 12 fig, 12 tab, 19 ref. FWPCA Grant 5 R 01 WP 00912-02 ESE Majumdar H, Carstens MR (1967) Diffusion of particles by turbulence: effect of particle size. Water Resources Center, Georgia Inst Technol Rep WRC-0967, Dec 1967. 102 p, 12 fig, 12 tab, 19 ref. FWPCA Grant 5 R 01 WP 00912-02 ESE
35.
Zurück zum Zitat Mei CC (1969) Nonuniform diffusion of suspended sediment. J Hydraul Div 95(1):581–584CrossRef Mei CC (1969) Nonuniform diffusion of suspended sediment. J Hydraul Div 95(1):581–584CrossRef
36.
Zurück zum Zitat Mazumder B, Ghoshal K (2006) Velocity and concentration profiles in uniform sediment-laden flow. Appl Math Model 30(2):164–176CrossRef Mazumder B, Ghoshal K (2006) Velocity and concentration profiles in uniform sediment-laden flow. Appl Math Model 30(2):164–176CrossRef
37.
Zurück zum Zitat Mason JC, Handscomb DC (2002) Chebyshev polynomials. CRC Press, CambridgeCrossRef Mason JC, Handscomb DC (2002) Chebyshev polynomials. CRC Press, CambridgeCrossRef
38.
Zurück zum Zitat Moodie AJ, Nittrouer JA, Ma H, Carlson BN, Wang Y, Lamb MP, Parker G (2022) Suspended sediment-induced stratification inferred from concentration and velocity profile measurements in the lower yellow river, china. Water Resour Res 58(5):2020–027192CrossRef Moodie AJ, Nittrouer JA, Ma H, Carlson BN, Wang Y, Lamb MP, Parker G (2022) Suspended sediment-induced stratification inferred from concentration and velocity profile measurements in the lower yellow river, china. Water Resour Res 58(5):2020–027192CrossRef
39.
Zurück zum Zitat Monin A, Yaglom A (1971) Statistical fluid dynamics, vol. I and II. MIT Press, Cambridge Monin A, Yaglom A (1971) Statistical fluid dynamics, vol. I and II. MIT Press, Cambridge
40.
Zurück zum Zitat Pal D, Ghoshal K (2016) Effect of particle concentration on sediment and turbulent diffusion coefficients in open-channel turbulent flow. Environ Earth Sci 75:1–11CrossRef Pal D, Ghoshal K (2016) Effect of particle concentration on sediment and turbulent diffusion coefficients in open-channel turbulent flow. Environ Earth Sci 75:1–11CrossRef
41.
Zurück zum Zitat Pu JH, Wallwork JT, Khan MA, Pandey M, Pourshahbaz H, Satyanaga A, Hanmaiahgari PR, Gough T (2021) Flood suspended sediment transport: combined modelling from dilute to hyper-concentrated flow. Water 13(3):379CrossRef Pu JH, Wallwork JT, Khan MA, Pandey M, Pourshahbaz H, Satyanaga A, Hanmaiahgari PR, Gough T (2021) Flood suspended sediment transport: combined modelling from dilute to hyper-concentrated flow. Water 13(3):379CrossRef
42.
Zurück zum Zitat Rouse H (1937) Modern conceptions of the mechanics of fluid turbulence. Trans Am Soc Civ Eng 102(1):463–505CrossRef Rouse H (1937) Modern conceptions of the mechanics of fluid turbulence. Trans Am Soc Civ Eng 102(1):463–505CrossRef
43.
Zurück zum Zitat Sen S, Kundu S, Absi R, Ghoshal K (2023) A model for coupled fluid velocity and suspended sediment concentration in an unsteady stratified turbulent flow through an open channel. J Eng Mech 149(1):04022088CrossRef Sen S, Kundu S, Absi R, Ghoshal K (2023) A model for coupled fluid velocity and suspended sediment concentration in an unsteady stratified turbulent flow through an open channel. J Eng Mech 149(1):04022088CrossRef
44.
Zurück zum Zitat Smith JD, McLean S (1977) Boundary layer adjustments to bottom topography and suspended sediment. Elsevier Oceanogr Ser 19:123–151CrossRef Smith JD, McLean S (1977) Boundary layer adjustments to bottom topography and suspended sediment. Elsevier Oceanogr Ser 19:123–151CrossRef
45.
Zurück zum Zitat Smith JD, McLean S (1977) Spatially averaged flow over a wavy surface. J Geophys Res 82(12):1735–1746CrossRef Smith JD, McLean S (1977) Spatially averaged flow over a wavy surface. J Geophys Res 82(12):1735–1746CrossRef
46.
Zurück zum Zitat Sweilam NH, Nagy AM, El-Sayed AA (2015) Second kind shifted chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals 73:141–147MathSciNetCrossRef Sweilam NH, Nagy AM, El-Sayed AA (2015) Second kind shifted chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals 73:141–147MathSciNetCrossRef
47.
Zurück zum Zitat Sweilam N, Nagy A, El-Sayed AA (2016) On the numerical solution of space fractional order diffusion equation via shifted chebyshev polynomials of the third kind. J King Saud Univ Sci 28(1):41–47CrossRef Sweilam N, Nagy A, El-Sayed AA (2016) On the numerical solution of space fractional order diffusion equation via shifted chebyshev polynomials of the third kind. J King Saud Univ Sci 28(1):41–47CrossRef
48.
49.
Zurück zum Zitat Velikanov M (1954) Principle of the gravitational theory of the movement of sediments. Acad Sci Bullet USSR Geophys Ser 4:349–359 Velikanov M (1954) Principle of the gravitational theory of the movement of sediments. Acad Sci Bullet USSR Geophys Ser 4:349–359
50.
Zurück zum Zitat Van Rijn LC (1984) Sediment transport, part ii: suspended load transport. J Hydraul Eng 110(11):1613–1641CrossRef Van Rijn LC (1984) Sediment transport, part ii: suspended load transport. J Hydraul Eng 110(11):1613–1641CrossRef
51.
Zurück zum Zitat Wu P, Jin Y (2010) Parameters used in modeling sediment-laden flow in open channels. Environmental hydraulics. CRC Press, London, pp 265–270 Wu P, Jin Y (2010) Parameters used in modeling sediment-laden flow in open channels. Environmental hydraulics. CRC Press, London, pp 265–270
52.
Zurück zum Zitat Wright S, Parker G (2004) Density stratification effects in sand-bed rivers. J Hydraul Eng 130(8):783–795CrossRef Wright S, Parker G (2004) Density stratification effects in sand-bed rivers. J Hydraul Eng 130(8):783–795CrossRef
53.
Zurück zum Zitat Wright S, Parker G (2004) Flow resistance and suspended load in sand-bed rivers: simplified stratification model. J Hydraul Eng 130(8):796–805CrossRef Wright S, Parker G (2004) Flow resistance and suspended load in sand-bed rivers: simplified stratification model. J Hydraul Eng 130(8):796–805CrossRef
54.
Zurück zum Zitat Zhiyao S, Tingting W, Fumin X, Ruijie L (2008) A simple formula for predicting settling velocity of sediment particles. Water Sci Eng 1(1):37–43CrossRef Zhiyao S, Tingting W, Fumin X, Ruijie L (2008) A simple formula for predicting settling velocity of sediment particles. Water Sci Eng 1(1):37–43CrossRef
Metadaten
Titel
Study of steady two-dimensional advection–diffusion equation with stratification using second-kind shifted Chebyshev polynomials
verfasst von
Sumit Sen
Koeli Ghoshal
Jaan H. Pu
Publikationsdatum
16.12.2024
Verlag
Springer London
Erschienen in
Engineering with Computers
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-02086-9