Skip to main content
Erschienen in: Metallurgist 11-12/2019

13.03.2019

Study of Strategies for Forming Stainless Steel Objects with Cellular Structures by Selective Laser Melting

verfasst von: A. Ya. Travyanov, P. V. Petrovskii, V. V. Cheverikin, P. Yu. Sokolov, A. A. Davidenko

Erschienen in: Metallurgist | Ausgabe 11-12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective laser melting (SLM) technology, which exhibits high printing resolution capacity, in used in order to prepare objects with cellular structures corrosion-resistant steel (316L). Cellular structures are considered as promising elements for topological optimization with the aim of reducing weight and giving an object special properties. The effect is studied in this work of strategies for laser beam scanning on an object being formed with a cellular BCC structure of steel 03Kh16N15MZ during SLM in an SLM280 unit. It is shown that depending on production regimes for object preparation with these structures there are changes in cellular structure strut minimum diameter, nature and distribution of defects, and mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Dumas, P. Terriault, and V. Brailovski, “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials,” Mater. Des., 121, 383–392 (2017).CrossRef M. Dumas, P. Terriault, and V. Brailovski, “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials,” Mater. Des., 121, 383–392 (2017).CrossRef
2.
Zurück zum Zitat T. A. Schaedler, A. J. Jacobsen, A. Torrents, et al., “Ultralight metallic microlattices,” Sci., 344, No. 6058, 962–965 (2011).CrossRef T. A. Schaedler, A. J. Jacobsen, A. Torrents, et al., “Ultralight metallic microlattices,” Sci., 344, No. 6058, 962–965 (2011).CrossRef
3.
Zurück zum Zitat J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, 559–632 (2001).CrossRef J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, 559–632 (2001).CrossRef
4.
Zurück zum Zitat C. Simoneau, P. Terriault, B. Jetté, et al., “Development of a porous metallic femoral stem: design, manufacturing, simulation and mechanical testing,” Mater. Des., 114, 546–556 (2017).CrossRef C. Simoneau, P. Terriault, B. Jetté, et al., “Development of a porous metallic femoral stem: design, manufacturing, simulation and mechanical testing,” Mater. Des., 114, 546–556 (2017).CrossRef
5.
Zurück zum Zitat X. Zheng, H. Lee, T. H. Weisgraber, et al., “Ultralight, ultrastiff mechanical metamaterials,” Sci., 344, No. 6190, 1373–1377 (2014).CrossRef X. Zheng, H. Lee, T. H. Weisgraber, et al., “Ultralight, ultrastiff mechanical metamaterials,” Sci., 344, No. 6190, 1373–1377 (2014).CrossRef
6.
Zurück zum Zitat X. P. Tan, Y. J. Tan, C. S. L. Chow, et al., “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Mater. Sci. Eng., 76, 1328–1343 (2017).CrossRef X. P. Tan, Y. J. Tan, C. S. L. Chow, et al., “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Mater. Sci. Eng., 76, 1328–1343 (2017).CrossRef
7.
Zurück zum Zitat Z. Xiao, Y. Yang, R. Xiao, et al., “Evaluation of topology-optimized lattice structures manufactured via selective laser melting,” Mater. Des., 143, 27–37 (2018).CrossRef Z. Xiao, Y. Yang, R. Xiao, et al., “Evaluation of topology-optimized lattice structures manufactured via selective laser melting,” Mater. Des., 143, 27–37 (2018).CrossRef
8.
Zurück zum Zitat P. Köhnen, Ch. Haase, J. Bültmann, et al., “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel,” Mater. Des., 145, 2005–2017 (2018).CrossRef P. Köhnen, Ch. Haase, J. Bültmann, et al., “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel,” Mater. Des., 145, 2005–2017 (2018).CrossRef
9.
Zurück zum Zitat Wohlers Associates, Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Fort Collins (Colo.) (2017). Wohlers Associates, Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Fort Collins (Colo.) (2017).
10.
Zurück zum Zitat D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., 57, 133–164 (2012).CrossRef D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., 57, 133–164 (2012).CrossRef
11.
Zurück zum Zitat D. L. Bourell, “Perspectives on additive manufacturing,” Annul. Rev. Mater. Res., 46, No. 1, 1–18 (2016).CrossRef D. L. Bourell, “Perspectives on additive manufacturing,” Annul. Rev. Mater. Res., 46, No. 1, 1–18 (2016).CrossRef
12.
Zurück zum Zitat D. Ivanov, A. Travyanov, P. Petrovskiy, et al., “Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment,” Additive Manufacturing, 18, 269–275 (2017).CrossRef D. Ivanov, A. Travyanov, P. Petrovskiy, et al., “Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment,” Additive Manufacturing, 18, 269–275 (2017).CrossRef
13.
Zurück zum Zitat M. Doubenskaia, A. Domashenkov, I. Smurov, and P. S. Petrovskiy, “Study of selective laser melting of intermetallic TiAl powder using integral analysis,” Int. J. Machine Tools & Manufacture, 129, 1–14 (2018).CrossRef M. Doubenskaia, A. Domashenkov, I. Smurov, and P. S. Petrovskiy, “Study of selective laser melting of intermetallic TiAl powder using integral analysis,” Int. J. Machine Tools & Manufacture, 129, 1–14 (2018).CrossRef
14.
Zurück zum Zitat I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single track formation in selective laser melting of metal powders,” J. Mater. Proc. Tech., 210, No. 12, 1624–1631 (2010).CrossRef I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single track formation in selective laser melting of metal powders,” J. Mater. Proc. Tech., 210, No. 12, 1624–1631 (2010).CrossRef
15.
Zurück zum Zitat J. Zielinski, H. Mindt, J. Chting, et al., “Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing,” JOM, 69, No. 12, 2711–2718 (2017).CrossRef J. Zielinski, H. Mindt, J. Chting, et al., “Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing,” JOM, 69, No. 12, 2711–2718 (2017).CrossRef
16.
Zurück zum Zitat L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge. Univ. Press, Cambridge (2010). L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge. Univ. Press, Cambridge (2010).
Metadaten
Titel
Study of Strategies for Forming Stainless Steel Objects with Cellular Structures by Selective Laser Melting
verfasst von
A. Ya. Travyanov
P. V. Petrovskii
V. V. Cheverikin
P. Yu. Sokolov
A. A. Davidenko
Publikationsdatum
13.03.2019
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 11-12/2019
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00768-0

Weitere Artikel der Ausgabe 11-12/2019

Metallurgist 11-12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.