Skip to main content
Erschienen in: Metallurgist 7-8/2020

13.11.2020

Study of the Effect of Alloying and Hot Deformation on Properties of Small Stampings of Alloys Based on TiAl Intermetallic

verfasst von: V. A. Duyunova, N. A. Nochovnaya, E. B. Alekseev, V. I. Ivanov

Erschienen in: Metallurgist | Ausgabe 7-8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intermetallic alloys based on TiAl compound are most promising high-temperature materials for gas turbine engines. The effect of alloying TiAl with active elements together with hot deformation and heat treatment on the structure of stamped components is studied. Alloy composition is selected and hot pressure treatment and heat treatment parameters are selected providing an improved set of mechanical properties in stamped components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. N. Kablov, “Innovative development of FGUP VIAM GNTs RF for implementing strategic of development of materials and processing technology in the period up to 2030,” Aviats. Mater. Tekhnol., No. 1, 3–33 (2015). E. N. Kablov, “Innovative development of FGUP VIAM GNTs RF for implementing strategic of development of materials and processing technology in the period up to 2030,” Aviats. Mater. Tekhnol., No. 1, 3–33 (2015).
2.
Zurück zum Zitat E. N. Kablov, N. A. Nochovnaya, P. V. Panin, E. B. Alekseev, and A. V. Novak, “Study of the structures and properties of heat-resistant alloys based on titanium aluminides with gadolinium microadditives,” Inorganic Materials: Applied Research, 8, No. 4, 634–641 (2017). E. N. Kablov, N. A. Nochovnaya, P. V. Panin, E. B. Alekseev, and A. V. Novak, “Study of the structures and properties of heat-resistant alloys based on titanium aluminides with gadolinium microadditives,” Inorganic Materials: Applied Research, 8, No. 4, 634–641 (2017).
3.
Zurück zum Zitat N. A. Belov, V. D. Belov, and N. I. Dashkevich, Phase Composition of Multicomponent γ-Alloys Based on Titanium Aluminide [in Russian], E. N. Kablov (editor), VIAM, Moscow (2018). N. A. Belov, V. D. Belov, and N. I. Dashkevich, Phase Composition of Multicomponent γ-Alloys Based on Titanium Aluminide [in Russian], E. N. Kablov (editor), VIAM, Moscow (2018).
4.
Zurück zum Zitat N. A. Novochnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel [in Russian], E. N. Kablov (editor), VIAM, Moscow (2018). N. A. Novochnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel [in Russian], E. N. Kablov (editor), VIAM, Moscow (2018).
5.
Zurück zum Zitat V. I. Ivanov and K. K. Yasinskii, “Efficiency of using heat-resistant alloys based on Ti3Al and TiAl intermetallics for operation at 600–800°C in aerospace engineering,” Tekhnol. Legkykh. Splavov, No. 3, 7–12 (1996). V. I. Ivanov and K. K. Yasinskii, “Efficiency of using heat-resistant alloys based on Ti3Al and TiAl intermetallics for operation at 600–800°C in aerospace engineering,” Tekhnol. Legkykh. Splavov, No. 3, 7–12 (1996).
6.
Zurück zum Zitat V. G. Antashev, K. K. Yasinskii, and V. I. Ivanov, “Development of technology for preparing cast components of intermetallic alloy TiAl and their use in structures,” Tekhnol. Legkykh. Splavov, No. 3, 20–23 (1996). V. G. Antashev, K. K. Yasinskii, and V. I. Ivanov, “Development of technology for preparing cast components of intermetallic alloy TiAl and their use in structures,” Tekhnol. Legkykh. Splavov, No. 3, 20–23 (1996).
7.
Zurück zum Zitat C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamental and Applications, Wiley-VCH Verlag & Co.KGaA, Weinhaim (2003). C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamental and Applications, Wiley-VCH Verlag & Co.KGaA, Weinhaim (2003).
8.
Zurück zum Zitat P. Leyens, J. Hausmann, and J. Kumpfert, “Continuous fiber reinforced titanium matrix composites: Fabrication, properties and application,” Advanсеd Engineering Materials, 5, No. 6, 399–410 (2003).CrossRef P. Leyens, J. Hausmann, and J. Kumpfert, “Continuous fiber reinforced titanium matrix composites: Fabrication, properties and application,” Advanсеd Engineering Materials, 5, No. 6, 399–410 (2003).CrossRef
9.
Zurück zum Zitat U. Karl, and U. Kainer, Metals Matrix Composites. Custom–Made Materials for Automotive and Aerospace Engineering, Wiley-VCH.Wiley-VCH Verlag GmbH and Co., KGaA. Wiemheim, Germany (2006). U. Karl, and U. Kainer, Metals Matrix Composites. Custom–Made Materials for Automotive and Aerospace Engineering, Wiley-VCH.Wiley-VCH Verlag GmbH and Co., KGaA. Wiemheim, Germany (2006).
10.
Zurück zum Zitat V. I. Ivanov and N. A. Novochnaya, “Prospective heat-resistanmt materials based on titanium aluminide,” in: Proc. Internat. Sci.-Tech. Conf. “Scientific Ideas of S. T. Kishkin and Contemporary Materials Science,” FGUP VIAM, Moscow (2006), pp. 98–103. V. I. Ivanov and N. A. Novochnaya, “Prospective heat-resistanmt materials based on titanium aluminide,” in: Proc. Internat. Sci.-Tech. Conf. “Scientific Ideas of S. T. Kishkin and Contemporary Materials Science,” FGUP VIAM, Moscow (2006), pp. 98–103.
11.
Zurück zum Zitat A. Lasalmonie, “Intermetallics: Why is it so difficult to introduce them in gas turbine engines” J. Intermetallics, 14, 1123–1129 (2006). A. Lasalmonie, “Intermetallics: Why is it so difficult to introduce them in gas turbine engines” J. Intermetallics, 14, 1123–1129 (2006).
12.
Zurück zum Zitat N. M. Sklyarov and E. A. Borisova, Aviation Materials and Technology. Scientific and Technical Collection “Titanium Alloy Combustion and Fire Resistance” [in Russian], FGUP VIAM, Moscow (2007). N. M. Sklyarov and E. A. Borisova, Aviation Materials and Technology. Scientific and Technical Collection “Titanium Alloy Combustion and Fire Resistance” [in Russian], FGUP VIAM, Moscow (2007).
13.
Zurück zum Zitat Ch. W. Elrod, ASME Turbo Expo: Power for Land, Sea and Air. G.A. United States. June 16-19. 2003. [COD], Amer. Soc. of Mech. Eng., New-York, USA (2003). Ch. W. Elrod, ASME Turbo Expo: Power for Land, Sea and Air. G.A. United States. June 16-19. 2003. [COD], Amer. Soc. of Mech. Eng., New-York, USA (2003).
14.
Zurück zum Zitat V. M. Imaev, R. M. Imaev, and T. I. Oleneva, “Contemporary state of research and development prospects for γ-TiAl alloy intermetallic,” Pis’ma Material., 1, No. 1, 25–31 (2011). V. M. Imaev, R. M. Imaev, and T. I. Oleneva, “Contemporary state of research and development prospects for γ-TiAl alloy intermetallic,” Pis’ma Material., 1, No. 1, 25–31 (2011).
17.
Zurück zum Zitat W. Сhen, Z. Li, F. Froes, and R. Boyer, “Additive manufacturing of titanium aluminides,” in: Additive Manufacturing for the Aerospace Industry, Elsevier. Inc. Cambridge. MA 02139.USA (2019). W. Сhen, Z. Li, F. Froes, and R. Boyer, “Additive manufacturing of titanium aluminides,” in: Additive Manufacturing for the Aerospace Industry, Elsevier. Inc. Cambridge. MA 02139.USA (2019).
18.
Zurück zum Zitat G. Litjering and J. C. Williams, Titanium, 2nd Edition, Series: Engineering Materials and Processes, Springer. Verlag–Berlin, Heiderberg (2007) G. Litjering and J. C. Williams, Titanium, 2nd Edition, Series: Engineering Materials and Processes, Springer. Verlag–Berlin, Heiderberg (2007)
21.
Zurück zum Zitat A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition. Structure. Properties, Handbook [in Russian] VILS MATI, Moscow (2009). A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition. Structure. Properties, Handbook [in Russian] VILS MATI, Moscow (2009).
22.
Zurück zum Zitat Fritz Appel, Jonathan David, Heaton Paul, and Michael Oering, Gamma Titanium Aluminide Alloys, Science and Technology, John Wiley & Sons (2011). Fritz Appel, Jonathan David, Heaton Paul, and Michael Oering, Gamma Titanium Aluminide Alloys, Science and Technology, John Wiley & Sons (2011).
Metadaten
Titel
Study of the Effect of Alloying and Hot Deformation on Properties of Small Stampings of Alloys Based on TiAl Intermetallic
verfasst von
V. A. Duyunova
N. A. Nochovnaya
E. B. Alekseev
V. I. Ivanov
Publikationsdatum
13.11.2020
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 7-8/2020
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-01060-2

Weitere Artikel der Ausgabe 7-8/2020

Metallurgist 7-8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.