Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2019

15.03.2019

Study of the Electrical and Diffusion Barrier Properties in Ultrathin Carbon Film-Coated Copper Microwires for Interconnects

verfasst von: Chang-Shuo Chang, Da-Jiun Wang, Tse-Chang Li, Chang-Hong Shen, Yuan-Chou Jing, Gien-Huang Wu, Jen-Fin Lin

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Four specimen patterns with the microstructure of a microcopper wire are deposited on the Si-wafer substrate plus thermal oxide (SiO2) film as the top layer. Each pattern was prepared to have two kinds of specimens, including with and without ultrathin carbon film between the copper wire and the top layer (SiO2). The effect of carbon film on electrical properties is evaluated via the measurements of the I (current)–V (voltage) curve, sheet electrical resistance, current leakage, and its ratio and effective permittivity. A rapid thermal annealing (RTA) technique is provided as an economic and efficient method to grow the ultrathin carbon film rapidly as the interlayer. Appropriate choices of 900 °C and 3 min as the annealing temperature and time can produce ultrathin carbon film with nearly 100% coverage of the copper surface. The sheet resistance of specimen demonstrates the behavior exactly opposite to that of the carbon film coverage of wire surface. The combined effect of elevating the voltage and annealing temperature of the specimen with carbon film on the current leakage is much lower than that arising in the specimen without carbon film, so long as the carbon films operating at that temperature (between 350 and 500 °C) are still sustainable. The differences in current leakage and effective permittivity between these two kinds of specimen are significantly increased by raising the temperature. The intensity (IC) of copper diffusions into the SiO2 layer in the specimens with the carbon film demonstrates behavior similar to that of current leakage (CL). The IC and CL values for the temperatures ≦ 350 °C are much lower than those obtained at 500 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRef K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRef
2.
Zurück zum Zitat X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamkann, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films On Copper Foils, Science, 2009, 324, p 1312–1314CrossRef X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamkann, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films On Copper Foils, Science, 2009, 324, p 1312–1314CrossRef
3.
Zurück zum Zitat K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355CrossRef K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355CrossRef
4.
Zurück zum Zitat S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2008, 100, p 016602CrossRef S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2008, 100, p 016602CrossRef
5.
Zurück zum Zitat C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRef C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRef
6.
Zurück zum Zitat A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907CrossRef A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907CrossRef
7.
Zurück zum Zitat Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 2010, 22, p 3906–3924CrossRef Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 2010, 22, p 3906–3924CrossRef
8.
Zurück zum Zitat Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J.M. Tour, Growth of Graphene from Solid Carbon Sources, Nature, 2010, 468, p 549–552CrossRef Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J.M. Tour, Growth of Graphene from Solid Carbon Sources, Nature, 2010, 468, p 549–552CrossRef
9.
Zurück zum Zitat M. Zhang, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene, Appl. Phys. Lett., 2010, 96, p 063110-1–063110-3 M. Zhang, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene, Appl. Phys. Lett., 2010, 96, p 063110-1–063110-3
10.
Zurück zum Zitat H. Ji, Y. Hou, Y. Ren, M. Charlton, W.H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, R. Piner, and R.S. Ruoff, Graphene Growth Using a Solid Carbon Feedstock and Hydrogen, ACS Nano, 2011, 5(9), p 7656–7661CrossRef H. Ji, Y. Hou, Y. Ren, M. Charlton, W.H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, R. Piner, and R.S. Ruoff, Graphene Growth Using a Solid Carbon Feedstock and Hydrogen, ACS Nano, 2011, 5(9), p 7656–7661CrossRef
11.
Zurück zum Zitat Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, Z. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, 2011, 5(4), p 3385–3390CrossRef Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, Z. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, 2011, 5(4), p 3385–3390CrossRef
12.
Zurück zum Zitat N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu, Universal Segregation Growth Approach to Wafer-Size Graphene from Non-noble Metals, Nano Lett., 2011, 11, p 297–303CrossRef N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu, Universal Segregation Growth Approach to Wafer-Size Graphene from Non-noble Metals, Nano Lett., 2011, 11, p 297–303CrossRef
13.
Zurück zum Zitat S.M. Kim, A. Hsu, Y.H. Lee, M. Dresselhaus, T. Palacios, K.K. Kim, and J. Kong, The Effect of Copper Pre-cleaning on Graphene Synthesis, Nanotechnology, 2013, 24, p 365602–365608CrossRef S.M. Kim, A. Hsu, Y.H. Lee, M. Dresselhaus, T. Palacios, K.K. Kim, and J. Kong, The Effect of Copper Pre-cleaning on Graphene Synthesis, Nanotechnology, 2013, 24, p 365602–365608CrossRef
14.
Zurück zum Zitat A. Iamach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zhang, A. Javey, J. Bokor, and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces, Nano Lett., 2010, 10, p 1542–1548CrossRef A. Iamach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zhang, A. Javey, J. Bokor, and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces, Nano Lett., 2010, 10, p 1542–1548CrossRef
15.
Zurück zum Zitat M. Levendorf, C. Ruiz-Vargas, S. Garg, and J. Park, Transfer-Free Batch Fabrication of Single Layer Graphene Transistors, Nano Lett., 2009, 9(12), p 4479–4483CrossRef M. Levendorf, C. Ruiz-Vargas, S. Garg, and J. Park, Transfer-Free Batch Fabrication of Single Layer Graphene Transistors, Nano Lett., 2009, 9(12), p 4479–4483CrossRef
16.
Zurück zum Zitat A. Pratt, Overview of the Use of Copper Interconnects in the Semiconductor Industry, Adv. Ener. Ind., 2004. p 1–20 A. Pratt, Overview of the Use of Copper Interconnects in the Semiconductor Industry, Adv. Ener. Ind., 2004. p 1–20
17.
Zurück zum Zitat M.R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, Advanced Interconnects: Materials, Processing, and Reliability, J. Solid State Sci. Technol., 2015, 4(1), p Y1–Y4CrossRef M.R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, Advanced Interconnects: Materials, Processing, and Reliability, J. Solid State Sci. Technol., 2015, 4(1), p Y1–Y4CrossRef
18.
Zurück zum Zitat Q. Hung, C.M. Lilley, M. Bode, and R. Divan, Surface and Size Effects on the Electrical Properties of Cu Nanowires, J. Appl. Phys., 2008, 104, p 023709–023714CrossRef Q. Hung, C.M. Lilley, M. Bode, and R. Divan, Surface and Size Effects on the Electrical Properties of Cu Nanowires, J. Appl. Phys., 2008, 104, p 023709–023714CrossRef
19.
Zurück zum Zitat R.L. Graham, G.B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R.H. Geiss, D.T. Read, and S. Peddeti, Resistivity Dominated by Surface Scattering in Sub-50Nm Cu Wires, Appl. Phys. Lett., 2010, 96, p 042116–042118CrossRef R.L. Graham, G.B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R.H. Geiss, D.T. Read, and S. Peddeti, Resistivity Dominated by Surface Scattering in Sub-50Nm Cu Wires, Appl. Phys. Lett., 2010, 96, p 042116–042118CrossRef
20.
Zurück zum Zitat S. Reich and C. Thomsen, Raman Spectroscopy of Graphite, Philos. Trans. R. Soc. A, 2004, 362(1824), p 2271–2288CrossRef S. Reich and C. Thomsen, Raman Spectroscopy of Graphite, Philos. Trans. R. Soc. A, 2004, 362(1824), p 2271–2288CrossRef
21.
Zurück zum Zitat M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman Spectroscopy of Carbon Nanotubes, Phys. Rep., 2005, 409(2), p 47–99CrossRef M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman Spectroscopy of Carbon Nanotubes, Phys. Rep., 2005, 409(2), p 47–99CrossRef
22.
Zurück zum Zitat A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97(18), p 187401-1–187401-4CrossRef A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97(18), p 187401-1–187401-4CrossRef
23.
Zurück zum Zitat J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy, Therm. Sci. Appl., 2010, p 51946 J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy, Therm. Sci. Appl., 2010, p 51946
24.
Zurück zum Zitat T.K.S. Wong, Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models, Materials, 2012, 5, p 1602–1625CrossRef T.K.S. Wong, Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models, Materials, 2012, 5, p 1602–1625CrossRef
25.
Zurück zum Zitat S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, Hoboken, 2006CrossRef S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, Hoboken, 2006CrossRef
26.
Zurück zum Zitat W. Hume-Rothery and H.M. Powell, On the Theory of Super-Lattice Structures in Alloys Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91(1), p 23–47 W. Hume-Rothery and H.M. Powell, On the Theory of Super-Lattice Structures in Alloys Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91(1), p 23–47
27.
Zurück zum Zitat C.S. Chang, T.C. Li, Y.C. Tsai, G.H. Wu, and J.F. Lin, Effects of Deposition Method and Conditions for IGZO Film and Thermal Annealing on Composite Film Quality, Surface Roughness, Microstructural Defects, and Electrical Properties of Ti/IGZO/Graphene/Polyimide Specimens, J. Alloys Compd., 2018, 768, p 298–315CrossRef C.S. Chang, T.C. Li, Y.C. Tsai, G.H. Wu, and J.F. Lin, Effects of Deposition Method and Conditions for IGZO Film and Thermal Annealing on Composite Film Quality, Surface Roughness, Microstructural Defects, and Electrical Properties of Ti/IGZO/Graphene/Polyimide Specimens, J. Alloys Compd., 2018, 768, p 298–315CrossRef
Metadaten
Titel
Study of the Electrical and Diffusion Barrier Properties in Ultrathin Carbon Film-Coated Copper Microwires for Interconnects
verfasst von
Chang-Shuo Chang
Da-Jiun Wang
Tse-Chang Li
Chang-Hong Shen
Yuan-Chou Jing
Gien-Huang Wu
Jen-Fin Lin
Publikationsdatum
15.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03976-6

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Engineering and Performance 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.