Skip to main content
Erschienen in: Polymer Bulletin 3/2018

23.05.2017 | Original Paper

Study of the structural orientation and mechanical strength of the electrospun nanofibers from polymers with different chain rigidity and geometry

verfasst von: Ran Shi, Yuezhen Bin, Xigao Jian

Erschienen in: Polymer Bulletin | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Structure of nano amorphous matter has not been studied sufficiently yet due to the difficulty in both operation of nano matter and characterization of their structure. In this work, a detailed study of the structural orientation within amorphous polymeric nanofiber and its mechanical strength was conducted for a highly thermal resistant amorphous polymer: poly(phthalazinone ether ketone) (PPEK). Poly(butylene terephthalate) (PBT), a semi-crystalline polymer with partial difference in chain flexibility and geometry to PPEK, was chosen for a comparative discussion. For the method, highly aligned PPEK and PBT nanofiber bundles were prepared by electrospinning with a home-made book-like collecting device. X-ray experiments were conducted to research their structural orientation, and tension experiments were conducted to research their mechanical properties. It was found that the amorphous PPEK nanofibers showed relatively low orientation degree of polymer chain limited by its rigid and twisted segments within the polymer chain, while PBT nanofibers showed not only highly ordered crystal structure but also very large shish length, beneficial from the co-existence of rigid and flexible segments. The above structural information was well supported by their uniaxial tensile behaviors, where PBT nanofiber manifested much larger ultimate stress σ, failure strain ε, Young’s modulus E and toughness than those of PPEK nanofibers and commercial PBT plastic. However, the electrospun PBT nanofibers’ orientation degree, within the range of 0.45–0.7, is much lower than that of some reported melt-spun PBT fibers with the orientation degree above 0.9. Therefore, it can be concluded that the instinct characterization of polymer chain and processing technique have a much more significant influence than size effect on the structural orientation and mechanical strength of nanofibers rather than size effect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructure: synthesis, characterization, and application. Adv Mater 15:353–389. doi:10.1002/adma.200390087 CrossRef Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructure: synthesis, characterization, and application. Adv Mater 15:353–389. doi:10.​1002/​adma.​200390087 CrossRef
3.
Zurück zum Zitat Gheibi A, Latifi M, Merati AA, Bagherzadeh R (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21:469. doi:10.1007/s10965-014-0469-5 CrossRef Gheibi A, Latifi M, Merati AA, Bagherzadeh R (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21:469. doi:10.​1007/​s10965-014-0469-5 CrossRef
5.
Zurück zum Zitat Guo S, Ke Q, Wang H, Jin X, Li Y (2012) Poly(butylene terephthalate) electrospun/melt-blow composite mats for white blood cell filtration. J Appl Polym Sci 128:3652–3659. doi:10.1002/app.38423 CrossRef Guo S, Ke Q, Wang H, Jin X, Li Y (2012) Poly(butylene terephthalate) electrospun/melt-blow composite mats for white blood cell filtration. J Appl Polym Sci 128:3652–3659. doi:10.​1002/​app.​38423 CrossRef
6.
Zurück zum Zitat Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biometer 72B:156–165. doi:10.1002/jbm.b.30128 CrossRef Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biometer 72B:156–165. doi:10.​1002/​jbm.​b.​30128 CrossRef
8.
Zurück zum Zitat Faccini M, Borja G, Borerrigter M, Martín DM, Crespiera SM, Vázquez-Campos S, Aubouy L, Amantia D (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:9. doi:10.1155/2015/247471 CrossRef Faccini M, Borja G, Borerrigter M, Martín DM, Crespiera SM, Vázquez-Campos S, Aubouy L, Amantia D (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:9. doi:10.​1155/​2015/​247471 CrossRef
9.
10.
Zurück zum Zitat Liu N, Fang G, Wan J, Zhou H, Long H, Zhao X (2011) Electrospun PEDOT:PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J Mater Chem 21:18962. doi:10.1039/c1jm14491j CrossRef Liu N, Fang G, Wan J, Zhou H, Long H, Zhao X (2011) Electrospun PEDOT:PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J Mater Chem 21:18962. doi:10.​1039/​c1jm14491j CrossRef
12.
17.
Zurück zum Zitat Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S (2008) Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc 130:15460–15466. doi:10.1021/ja804185s CrossRef Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S (2008) Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc 130:15460–15466. doi:10.​1021/​ja804185s CrossRef
19.
Zurück zum Zitat Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF (2007) Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc 129:2777–2782. doi:10.1021/ja065043f CrossRef Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF (2007) Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc 129:2777–2782. doi:10.​1021/​ja065043f CrossRef
22.
Zurück zum Zitat Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020. doi:10.1021/la034234i CrossRef Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020. doi:10.​1021/​la034234i CrossRef
23.
Zurück zum Zitat Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761. doi:10.1021/ja048648p CrossRef Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761. doi:10.​1021/​ja048648p CrossRef
24.
Zurück zum Zitat Picciani PHS, Medeiros ES, Pan Z, Wood DF, Orts WJ, Mattoso LHC, Soares BG (2010) Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers. Macromol Mater Eng 295:618–627. doi:10.1002/mame.201000019 CrossRef Picciani PHS, Medeiros ES, Pan Z, Wood DF, Orts WJ, Mattoso LHC, Soares BG (2010) Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers. Macromol Mater Eng 295:618–627. doi:10.​1002/​mame.​201000019 CrossRef
25.
Zurück zum Zitat Gazzano M, Gualandi C, Zucchelli A, Sui T, Korsunsky AM, Reinhard C, Focarete ML (2015) Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer 63:154–163. doi:10.1016/j.polymer.2015.03.002 CrossRef Gazzano M, Gualandi C, Zucchelli A, Sui T, Korsunsky AM, Reinhard C, Focarete ML (2015) Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer 63:154–163. doi:10.​1016/​j.​polymer.​2015.​03.​002 CrossRef
28.
29.
Zurück zum Zitat Shi R, Bin YZ, Yang WX, Wang D, Wang JY, Jian XG (2016) Optimization and characterization of poly(phthalazinone ether ketone) (PPEK) heat-resistant porous fibrous mat by electrospinning. Appl Surf Sci 379:282–290. doi:10.1016/j.apsusc.2016.04.079 CrossRef Shi R, Bin YZ, Yang WX, Wang D, Wang JY, Jian XG (2016) Optimization and characterization of poly(phthalazinone ether ketone) (PPEK) heat-resistant porous fibrous mat by electrospinning. Appl Surf Sci 379:282–290. doi:10.​1016/​j.​apsusc.​2016.​04.​079 CrossRef
31.
36.
Zurück zum Zitat Tian Y, Zhu C, Gong J, Ma J, Xu J (2015) Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers: in situ small and wide angle X-ray scattering studies. Eur Polym J 73:127–136. doi:10.1016/j.eurpolymj.2015.10.006 CrossRef Tian Y, Zhu C, Gong J, Ma J, Xu J (2015) Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers: in situ small and wide angle X-ray scattering studies. Eur Polym J 73:127–136. doi:10.​1016/​j.​eurpolymj.​2015.​10.​006 CrossRef
37.
Zurück zum Zitat Xu H, An M, Lv Y, Zhang L, Wang Z (2016) Structural development of gel-spinning UHMWPE fibers through industrial hot-drawing process analyzed by small/wide-angle X-ray scattering. Polym Bull. doi:10.1007/s00289-016-1742-z Xu H, An M, Lv Y, Zhang L, Wang Z (2016) Structural development of gel-spinning UHMWPE fibers through industrial hot-drawing process analyzed by small/wide-angle X-ray scattering. Polym Bull. doi:10.​1007/​s00289-016-1742-z
40.
Zurück zum Zitat Apostolov AA, Fakirov S, Stamm M, Patil RD, Mark JE (2000) Alpha–beta transition in poly(butylene terephthalate) as revealed by small-angle X-ray scattering. Macromolecules 33:6856–6860. doi:10.1021/ma000338d CrossRef Apostolov AA, Fakirov S, Stamm M, Patil RD, Mark JE (2000) Alpha–beta transition in poly(butylene terephthalate) as revealed by small-angle X-ray scattering. Macromolecules 33:6856–6860. doi:10.​1021/​ma000338d CrossRef
41.
Metadaten
Titel
Study of the structural orientation and mechanical strength of the electrospun nanofibers from polymers with different chain rigidity and geometry
verfasst von
Ran Shi
Yuezhen Bin
Xigao Jian
Publikationsdatum
23.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 3/2018
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2073-4

Weitere Artikel der Ausgabe 3/2018

Polymer Bulletin 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.