Skip to main content
Erschienen in: Wireless Personal Communications 3/2019

08.05.2019

Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture

verfasst von: Xiang Feng, Fang Yan, Xiaoyu Liu

Erschienen in: Wireless Personal Communications | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Precision agriculture is a suitable solution to these challenges such as shortage of food, deterioration of soil properties and water scarcity. The developments of modern information technologies and wireless communication technologies are the foundations for the realization of precision agriculture. This paper attempts to find suitable, feasible and practical wireless communication technologies for precision agriculture by analyzing the agricultural application scenarios and experimental tests. Three kinds of Wireless Sensor Networks (WSN) architecture, which is based on narrowband internet of things (NB-IoT), Long Range (LoRa) and ZigBee wireless communication technologies respectively, are presented for precision agriculture applications. The feasibility of three WSN architectures is verified by corresponding tests. By measuring the normal communication time, the power consumption of three wireless communication technologies is compared. Field tests and comprehensive analysis show that ZigBee is a better choice for monitoring facility agriculture, while LoRa and NB-IoT were identified as two suitable wireless communication technologies for field agriculture scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131.CrossRef Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131.CrossRef
2.
Zurück zum Zitat Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.CrossRef Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.CrossRef
3.
Zurück zum Zitat Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors, 18, 1731.CrossRef Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors, 18, 1731.CrossRef
4.
Zurück zum Zitat Martínez, R., Pastor, J. Á., Álvarez, B., & Iborra, A. (1979). A testbed to evaluate the FIWARE-based IoT platform in the domain of precision agriculture. Sensors, 2016, 16. Martínez, R., Pastor, J. Á., Álvarez, B., & Iborra, A. (1979). A testbed to evaluate the FIWARE-based IoT platform in the domain of precision agriculture. Sensors, 2016, 16.
5.
Zurück zum Zitat Pratim, R. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9, 395–420.CrossRef Pratim, R. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9, 395–420.CrossRef
6.
Zurück zum Zitat Ferrandez-Pastor, F. J., Garcia-Chamizo, J. M., Nieto-Hidalgo, M., Mora-Pascual, J., & Mora-Martinez, J. (2016). Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors, 16, 1141.CrossRef Ferrandez-Pastor, F. J., Garcia-Chamizo, J. M., Nieto-Hidalgo, M., Mora-Pascual, J., & Mora-Martinez, J. (2016). Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors, 16, 1141.CrossRef
8.
Zurück zum Zitat Sabri, N., Aljunid, S. A., Ahmad, R., Malek, M., Yahya, A., Kamaruddin, R., et al. (2012). Smart prolong fuzzy wireless sensor-actor network for agricultural application. Journal of Information Science and Engineering, 28(2), 295–316. Sabri, N., Aljunid, S. A., Ahmad, R., Malek, M., Yahya, A., Kamaruddin, R., et al. (2012). Smart prolong fuzzy wireless sensor-actor network for agricultural application. Journal of Information Science and Engineering, 28(2), 295–316.
9.
Zurück zum Zitat Ilie-Ablachim, D., Pătru, G. C., Florea, I. M., & Rosner, D. (2016). Monitoring device for culture substrate growth parameters for precision agriculture. In Proceedings of the 15th RoEduNet conference: Networking in education and research, Bucharest, Romania, 7–9 September 2016 (pp. 1–7). Ilie-Ablachim, D., Pătru, G. C., Florea, I. M., & Rosner, D. (2016). Monitoring device for culture substrate growth parameters for precision agriculture. In Proceedings of the 15th RoEduNet conference: Networking in education and research, Bucharest, Romania, 7–9 September 2016 (pp. 1–7).
11.
Zurück zum Zitat Chen, J., Hu, K., Wang, Q., Sun, Y., & Shi, Z. G. (2017). Narrow-band internet of things: Implementations and applications. IEEE Internet of Things Journal, 4(6), 2309–2314.CrossRef Chen, J., Hu, K., Wang, Q., Sun, Y., & Shi, Z. G. (2017). Narrow-band internet of things: Implementations and applications. IEEE Internet of Things Journal, 4(6), 2309–2314.CrossRef
15.
Zurück zum Zitat Alliance, Lo Ra. (2015). White Paper: A Technical Overview of Lora and Lorawan. San Ramon: The LoRa Alliance. Alliance, Lo Ra. (2015). White Paper: A Technical Overview of Lora and Lorawan. San Ramon: The LoRa Alliance.
18.
Zurück zum Zitat Li, L., & Liu, G. (2006). Design of greenhouse environment monitoring and controlling system based on bluetooth technology. Transactions of the Chinese Society for Agricultural Machinery, 10, 97–100. Li, L., & Liu, G. (2006). Design of greenhouse environment monitoring and controlling system based on bluetooth technology. Transactions of the Chinese Society for Agricultural Machinery, 10, 97–100.
19.
Zurück zum Zitat Hong, G. Z., & Hsieh, C. L. (2016). Application of integrated control strategy and bluetooth for irrigating romaine lettuce in greenhouse. IFAC Papers On-Line, 49, 381–386.CrossRef Hong, G. Z., & Hsieh, C. L. (2016). Application of integrated control strategy and bluetooth for irrigating romaine lettuce in greenhouse. IFAC Papers On-Line, 49, 381–386.CrossRef
20.
Zurück zum Zitat Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57, 1379–1387.CrossRef Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57, 1379–1387.CrossRef
21.
Zurück zum Zitat Bartlett, A. C., Andales, A. A., Arabi, M., & Bauder, T. A. (2015). A smartphone APP to extend use of a cloud-based irrigation scheduling tool. Computers and Electronics in Agriculture, 111, 127–130.CrossRef Bartlett, A. C., Andales, A. A., Arabi, M., & Bauder, T. A. (2015). A smartphone APP to extend use of a cloud-based irrigation scheduling tool. Computers and Electronics in Agriculture, 111, 127–130.CrossRef
22.
Zurück zum Zitat Vellidis, G., Liakos, V., Andreis, J. H., Perry, C. D., Porter, W. M., Barnes, E. M., et al. (2016). Development and assessment of a smartphone application for irrigation scheduling in cotton. Computers and Electronics in Agriculture, 127, 249–259.CrossRef Vellidis, G., Liakos, V., Andreis, J. H., Perry, C. D., Porter, W. M., Barnes, E. M., et al. (2016). Development and assessment of a smartphone application for irrigation scheduling in cotton. Computers and Electronics in Agriculture, 127, 249–259.CrossRef
23.
Zurück zum Zitat Yeng, C., Yuling, S., & Zhongyi, W. (2016). Connectivity of wireless sensor networks for plant growth in greenhouse. International Journal of Agricultural and Biological Engineering, 9, 89–98. Yeng, C., Yuling, S., & Zhongyi, W. (2016). Connectivity of wireless sensor networks for plant growth in greenhouse. International Journal of Agricultural and Biological Engineering, 9, 89–98.
24.
Zurück zum Zitat Cambra, C., Sendra, S., Jimenez, J. M., Lloret, J. (2017). Wireless network of sensors of low energy consumption in hydroponic agriculture. In Proceedings of the WSN & WLAN conference on JITEL, Valencia, Spain, 27–29 May 2017. Cambra, C., Sendra, S., Jimenez, J. M., Lloret, J. (2017). Wireless network of sensors of low energy consumption in hydroponic agriculture. In Proceedings of the WSN & WLAN conference on JITEL, Valencia, Spain, 27–29 May 2017.
25.
Zurück zum Zitat Alvino, A., & Marino, S. (2017). remote sensing for irrigation of horticultural crops. Horticulturae, 3, 40.CrossRef Alvino, A., & Marino, S. (2017). remote sensing for irrigation of horticultural crops. Horticulturae, 3, 40.CrossRef
26.
Zurück zum Zitat Voulodimos, Athanasios S., Patrikakis, Charalampos Z., Sideridis, Alexander B., Ntafis, Vasileios A., & Xylouri, Eftychia M. (2010). A complete farm management system based on animal identification using RFID technology. Computers and Electronics in Agriculture, 70, 380–388.CrossRef Voulodimos, Athanasios S., Patrikakis, Charalampos Z., Sideridis, Alexander B., Ntafis, Vasileios A., & Xylouri, Eftychia M. (2010). A complete farm management system based on animal identification using RFID technology. Computers and Electronics in Agriculture, 70, 380–388.CrossRef
27.
Zurück zum Zitat Ruiz, G. L., & Lunadei, L. (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79, 42–50.CrossRef Ruiz, G. L., & Lunadei, L. (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79, 42–50.CrossRef
29.
Zurück zum Zitat Zhurong, C., Chao, H., Jingsheng, L., Shoubin, L. (2008). Protocol architecture for wireless body area network based on nRF24L01. In Proceedings of the 2008 IEEE international conference on automation and logistics (ICAL 2008), Qingdao, China, 1–3 September 2008 (pp. 3050–3054). Zhurong, C., Chao, H., Jingsheng, L., Shoubin, L. (2008). Protocol architecture for wireless body area network based on nRF24L01. In Proceedings of the 2008 IEEE international conference on automation and logistics (ICAL 2008), Qingdao, China, 1–3 September 2008 (pp. 3050–3054).
30.
Zurück zum Zitat Mendez, G. R., Yunus, M. A. M, & Mukhopadhyay, S. C. (2012). A WiFi based smart wireless sensor network for an agricultural environment. In IEEE international instrumentation and measurement technology conference proceedings, Graz, Austria, 2012 (pp. 2640–2645). Mendez, G. R., Yunus, M. A. M, & Mukhopadhyay, S. C. (2012). A WiFi based smart wireless sensor network for an agricultural environment. In IEEE international instrumentation and measurement technology conference proceedings, Graz, Austria, 2012 (pp. 2640–2645).
31.
Zurück zum Zitat Mohapatra, A. G., & Lenka, S. K. (2016). Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture. Procedia Computer Science, 78, 499–506.CrossRef Mohapatra, A. G., & Lenka, S. K. (2016). Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture. Procedia Computer Science, 78, 499–506.CrossRef
34.
Zurück zum Zitat Guo, J., Ma, X. M., Guo, W., & Sun, Z. F. (2013). Design of farmland environment remote monitoring system based on ZigBee network. Journal of Agricultural Mechanization Research, 11, 65–70. Guo, J., Ma, X. M., Guo, W., & Sun, Z. F. (2013). Design of farmland environment remote monitoring system based on ZigBee network. Journal of Agricultural Mechanization Research, 11, 65–70.
35.
Zurück zum Zitat Zhang, Q., Yang, X. L., Zhou, Y. M., Wang, L. R., & Guo, X. S. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-Science A, 8, 1584–1587.CrossRef Zhang, Q., Yang, X. L., Zhou, Y. M., Wang, L. R., & Guo, X. S. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-Science A, 8, 1584–1587.CrossRef
36.
Zurück zum Zitat Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRef Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRef
37.
Zurück zum Zitat Huircán, J. I., Muñoz, C., Young, H., Von Dossow, L., Bustos, J., Vivallo, G., et al. (2010). Zigbee-based wireless sensor network localization for cattle monitoring in grazing fields. Computers and Electronics in Agriculture, 74(2), 258–264.CrossRef Huircán, J. I., Muñoz, C., Young, H., Von Dossow, L., Bustos, J., Vivallo, G., et al. (2010). Zigbee-based wireless sensor network localization for cattle monitoring in grazing fields. Computers and Electronics in Agriculture, 74(2), 258–264.CrossRef
38.
Zurück zum Zitat Nadimi, E. S., Jorgensen, R. N., Blanes-Vidal, V., & Christensen, S. (2012). Monitoring and classifying animal behavior using zigbee-based mobile ad hoc wireless sensor networks and artificial neural networks. Computers and Electronics in Agriculture, 82, 44–54.CrossRef Nadimi, E. S., Jorgensen, R. N., Blanes-Vidal, V., & Christensen, S. (2012). Monitoring and classifying animal behavior using zigbee-based mobile ad hoc wireless sensor networks and artificial neural networks. Computers and Electronics in Agriculture, 82, 44–54.CrossRef
40.
Zurück zum Zitat Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63, 166–176.CrossRef Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63, 166–176.CrossRef
41.
Zurück zum Zitat Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.CrossRef Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.CrossRef
43.
Metadaten
Titel
Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture
verfasst von
Xiang Feng
Fang Yan
Xiaoyu Liu
Publikationsdatum
08.05.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06496-7

Weitere Artikel der Ausgabe 3/2019

Wireless Personal Communications 3/2019 Zur Ausgabe

Neuer Inhalt