Skip to main content
Erschienen in:

07.06.2023 | Manuscript

Study on Bayesian Skew-Normal Linear Mixed Model and Its Application in Fire Insurance

verfasst von: Meiling Gong, Zhanli Mao, Di Zhang, Jianxing Ren, Songtao Zuo

Erschienen in: Fire Technology | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fire insurance is a crucial component of property insurance, and its rating depends on the forecast of insurance loss claim data. Fire insurance loss claim data have complicated characteristics such as skewness and heavy tail. The traditional linear mixed model is commonly difficult to accurately describe the distribution of loss. Therefore, it is crucial to establish a scientific and reasonable distribution model of fire insurance loss claim data. In this study, the random effects and random errors in the linear mixed model are firstly assumed to obey the skew-normal distribution. Then, a skew-normal linear mixed model is established using the Bayesian MCMC method based on a set of U.S. property insurance loss claims data. Comparative analysis is conducted with the linear mixed model of logarithmic transformation. Afterward, a Bayesian skew-normal linear mixed model for Chinese fire insurance loss claims data is designed. The posterior distribution of claim data parameters and related parameter estimation are employed with the R language JAGS package to obtain the predicted and simulated loss claim values. Finally, the optimization model in this study is used to determine the insurance rate. The results demonstrate that the model established by the Bayesian MCMC method can overcome data skewness, and the fitting and correlation with the sample data are better than the log-normal linear mixed model. Hence, it can be concluded that the distribution model proposed in this paper is reasonable for describing insurance claims. This study innovates a new approach for calculating the insurance premium rate and expands the application of the Bayesian method in the fire insurance field.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
9.
Zurück zum Zitat Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Can J Stat 31(2):22MathSciNetCrossRefMATH Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Can J Stat 31(2):22MathSciNetCrossRefMATH
22.
Zurück zum Zitat Klugman SA (1992) Bayesian statistics in actuarial science: with emphasis on credibility. Kluwer Academic Publishers, BostonCrossRefMATH Klugman SA (1992) Bayesian statistics in actuarial science: with emphasis on credibility. Kluwer Academic Publishers, BostonCrossRefMATH
Metadaten
Titel
Study on Bayesian Skew-Normal Linear Mixed Model and Its Application in Fire Insurance
verfasst von
Meiling Gong
Zhanli Mao
Di Zhang
Jianxing Ren
Songtao Zuo
Publikationsdatum
07.06.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01436-1

Weitere Artikel der Ausgabe 5/2023

Fire Technology 5/2023 Zur Ausgabe