Skip to main content
Erschienen in:

15.02.2024 | Engine and Emissions, Fuels and Lubricants

Study on CO2 Emission Assessment of Heavy-Duty and Ultra-Heavy-Duty Vehicles Using Machine Learning

verfasst von: Seokho Moon, Jinhee Lee, Hyung Jun Kim, Jung Hwan Kim, Suhan Park

Erschienen in: International Journal of Automotive Technology | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

EU is actively moving towards the implementation of Euro-7 regulations, thus placing a strong emphasis on real-road emissions. Euro-7 introduced OBM (on-board monitoring), which is an enhancement of regulations that closely replicates real-world road conditions. Furthermore, there is a need to devise an effective application strategy for utilizing the driving monitoring data prior to the enforcement of OBM. This study addresses these challenges by conducting RDE (real-driving emission) tests on both 3.5-ton and 25-ton commercial vehicles to gather CO2 emissions and engine control unit data accessible through an OBD (on-board diagnostics) port. To process the RDE data, an appropriate machine learning model, XGBoost, was selected and trained. The outcome of our CO2 emission prediction for the two vehicles demonstrated that employing monitoring data yielded reliable estimates of actual road CO2 emissions. Finally, a comparative analysis was conducted between the proposed monitoring approach and the fuel-based CO2 monitoring method using the emission factor from EMEP/EEA air pollutant emission inventory guidebook 2019 utilizing fuel consumption data achieved through the OBFCM (on-board fuel and energy consumption monitoring) rule. Our method, which is based on predictive CO2 emissions monitoring, exhibited significantly greater accuracy. This outcome underscores the necessity to adopt the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat AECC. (2023). Newsletter international regulatory developments. AECC. (2023). Newsletter international regulatory developments.
Zurück zum Zitat Aeriseurope. (2021). Euro 7 Impact Assessment: The outlook for air quality compliance in the EU and the role of the road transport sector. Aeriseurope. (2021). Euro 7 Impact Assessment: The outlook for air quality compliance in the EU and the role of the road transport sector.
Zurück zum Zitat Automobile Production Statistics (KOREA). (2022). KOSIS. Automobile Production Statistics (KOREA). (2022). KOSIS.
Zurück zum Zitat Cha, J. P., Park, J. H., Lee, H. W. & Chon, M. S. (2021). KSAE, 22(3): 569–577. Cha, J. P., Park, J. H., Lee, H. W. & Chon, M. S. (2021). KSAE, 22(3): 569–577.
Zurück zum Zitat Chen, T, & Guestrin, C. (2016). XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco California USA, pp. 785–794. Chen, T, & Guestrin, C. (2016). XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco California USA, pp. 785–794.
Zurück zum Zitat Chung, J. W., Lee, B. H., Lee, S. W., Choi, S. H., & Kim, D. J. (2022a). A study on the real road driving DB-based trip CO2 emission prediction calculation method that can reflect the vehicle type and driving environment conditions of the ICEV. KSAE, 30(9), 693–702.CrossRef Chung, J. W., Lee, B. H., Lee, S. W., Choi, S. H., & Kim, D. J. (2022a). A study on the real road driving DB-based trip CO2 emission prediction calculation method that can reflect the vehicle type and driving environment conditions of the ICEV. KSAE, 30(9), 693–702.CrossRef
Zurück zum Zitat Chung, J. W., Lee, B. H., Lee, S. W., Choi, S. H., & Kim, D. J. (2022b). Development of prediction model for CO2 and NOx emissions for diesel engine vehicles by considering real road driving environment. International Journal of Automotive Technology, 23(2), 541–554.CrossRef Chung, J. W., Lee, B. H., Lee, S. W., Choi, S. H., & Kim, D. J. (2022b). Development of prediction model for CO2 and NOx emissions for diesel engine vehicles by considering real road driving environment. International Journal of Automotive Technology, 23(2), 541–554.CrossRef
Zurück zum Zitat Commission Regulation (EU) No 582/2011 of 25 May 2011 implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the CouncilText with EEA relevance. Commission Regulation (EU) No 582/2011 of 25 May 2011 implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the CouncilText with EEA relevance.
Zurück zum Zitat Commission regulation (EU) 2018/ 1832—of 5 November 2018—amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) 2017/1151 for the purpose of improving the emission type approval tests and procedures for light passenger and commercial vehicles, including those for in-service conformity and real-driving emissions and introducing devices for monitoring the consumption of fuel and electric energy. Commission regulation (EU) 2018/ 1832—of 5 November 2018—amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) 2017/1151 for the purpose of improving the emission type approval tests and procedures for light passenger and commercial vehicles, including those for in-service conformity and real-driving emissions and introducing devices for monitoring the consumption of fuel and electric energy.
Zurück zum Zitat Commission Regulation (EU) 2018/ 932—of 29 June 2018—amending Regulation (EU) No 582/2011 as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the requirements for universal fuel range type-approval. Commission Regulation (EU) 2018/ 932—of 29 June 2018—amending Regulation (EU) No 582/2011 as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the requirements for universal fuel range type-approval.
Zurück zum Zitat Danquah, B., Riedmaier, S., & Lienkamp, M. (2022). Potential of statistical model verification, validation and uncertainty quantification in automotive vehicle dynamics simulations: A review. Vehicle System Dynamics, 60(4), 1292–1321.CrossRef Danquah, B., Riedmaier, S., & Lienkamp, M. (2022). Potential of statistical model verification, validation and uncertainty quantification in automotive vehicle dynamics simulations: A review. Vehicle System Dynamics, 60(4), 1292–1321.CrossRef
Zurück zum Zitat Demuynck, J., & Bosteels, D. (2023). Zero-impact emissions from a gasoline car with advanced emission controls and e-fuels. Springer.CrossRef Demuynck, J., & Bosteels, D. (2023). Zero-impact emissions from a gasoline car with advanced emission controls and e-fuels. Springer.CrossRef
Zurück zum Zitat EMEP/EEA air pollutant emission inventory guidebook. (2019). EMEP/EEA air pollutant emission inventory guidebook. (2019).
Zurück zum Zitat EPA. (2021). Overview of EPA’s motor vehicle emission simulator (MOVES3). EPA. (2021). Overview of EPA’s motor vehicle emission simulator (MOVES3).
Zurück zum Zitat European Commission. (2018). The European Commission’s science and knowledge service VECTO—Overview. European Commission. (2018). The European Commission’s science and knowledge service VECTO—Overview.
Zurück zum Zitat European Commission. Joint Research Centre. (2019). Joint Research Centre 2018 light-duty vehicles emissions testing: Contribution to the EU market surveillance: Testing protocols and vehicle emissions performance. Publications Office. European Commission. Joint Research Centre. (2019). Joint Research Centre 2018 light-duty vehicles emissions testing: Contribution to the EU market surveillance: Testing protocols and vehicle emissions performance. Publications Office.
Zurück zum Zitat Global technical regulation No. 5. Technical requirement for on-board diagnostic (OBD) systems for road vehicles. ECE/TRANS/180/Add.5. 2007. Global technical regulation No. 5. Technical requirement for on-board diagnostic (OBD) systems for road vehicles. ECE/TRANS/180/Add.5. 2007.
Zurück zum Zitat Islam, E., et al. (2021). A detailed vehicle modeling & simulation study quantifying energy consumption and cost reduction of advanced vehicle technologies through 2050. Islam, E., et al. (2021). A detailed vehicle modeling & simulation study quantifying energy consumption and cost reduction of advanced vehicle technologies through 2050.
Zurück zum Zitat Kutluay, E., & Winner, H. (2014). Validation of vehicle dynamics simulation models—a review. Vehicle System Dynamics, 52(2), 186–200.CrossRef Kutluay, E., & Winner, H. (2014). Validation of vehicle dynamics simulation models—a review. Vehicle System Dynamics, 52(2), 186–200.CrossRef
Zurück zum Zitat Proposal for a regulation of the European parliament and of the council—on type-approval of motor vehicles and engines and of systems, components and separate technical units intended for such vehicles, with respect to their emissions and battery durability (Euro 7) and repealing Regulations (EC) No 715/2007 and (EC) No 595/2009; 2022. Proposal for a regulation of the European parliament and of the council—on type-approval of motor vehicles and engines and of systems, components and separate technical units intended for such vehicles, with respect to their emissions and battery durability (Euro 7) and repealing Regulations (EC) No 715/2007 and (EC) No 595/2009; 2022.
Zurück zum Zitat Singh, M., & Dubey, R. (2023). Deep learning model based CO2 emissions prediction using vehicle telematics sensors data. IEEE Transactions on Intelligent Vehicles., 8(1), 768–777.CrossRef Singh, M., & Dubey, R. (2023). Deep learning model based CO2 emissions prediction using vehicle telematics sensors data. IEEE Transactions on Intelligent Vehicles., 8(1), 768–777.CrossRef
Zurück zum Zitat Song, J. G., & Cha, J. P. (2022). Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle. Energy, 244, 123166.CrossRef Song, J. G., & Cha, J. P. (2022). Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle. Energy, 244, 123166.CrossRef
Zurück zum Zitat The California Low-Emission Vehicle Regulations. (2022). The California Low-Emission Vehicle Regulations. (2022).
Zurück zum Zitat Tier 3 Motor Vehicle Emission and Fuel Standards (Final Rule). (2014). Tier 3 Motor Vehicle Emission and Fuel Standards (Final Rule). (2014).
Zurück zum Zitat Transport & Environment. (2021). Euro 7: Europe’s chance to have clean air. Transport & Environment. (2021). Euro 7: Europe’s chance to have clean air.
Zurück zum Zitat Wen, H. T., Lu, J. H., & Jhang, D. S. (2021). Features importance analysis of diesel vehicles’ NOx and CO2 emission predictions in real road driving based on gradient boosting regression model. IJERPH, 18(24), 13044.CrossRef Wen, H. T., Lu, J. H., & Jhang, D. S. (2021). Features importance analysis of diesel vehicles’ NOx and CO2 emission predictions in real road driving based on gradient boosting regression model. IJERPH, 18(24), 13044.CrossRef
Zurück zum Zitat Williams, M., & Minjares, R. (2016). A technical summary of Euro 6/VI vehicle emission standards. Williams, M., & Minjares, R. (2016). A technical summary of Euro 6/VI vehicle emission standards.
Zurück zum Zitat Xie, H., Zhang, Y. J., He, Y., Kun, Y., Boqiang, F., Yu, D. Q., & Lei, B. (2021). Parallel attention-based LSTM for building a prediction model of vehicle emissions using PEMS and OBD. Measurement, 185, 110074.CrossRef Xie, H., Zhang, Y. J., He, Y., Kun, Y., Boqiang, F., Yu, D. Q., & Lei, B. (2021). Parallel attention-based LSTM for building a prediction model of vehicle emissions using PEMS and OBD. Measurement, 185, 110074.CrossRef
Zurück zum Zitat Yang, S., Lu, Y., & Li, S. (2013). An overview on vehicle dynamics. International Journal Dynamics and Control, 1(4), 385–395.CrossRef Yang, S., Lu, Y., & Li, S. (2013). An overview on vehicle dynamics. International Journal Dynamics and Control, 1(4), 385–395.CrossRef
Zurück zum Zitat Zien, N., Kramer, S., & Sonnenburg, G. R., et al. (2009). The feature importance ranking measure. Lecture Notes in Computer ScienceIn W. Buntine (Ed.), Machine learning and knowledge discovery in databases (pp. 694–709). Springer.CrossRef Zien, N., Kramer, S., & Sonnenburg, G. R., et al. (2009). The feature importance ranking measure. Lecture Notes in Computer ScienceIn W. Buntine (Ed.), Machine learning and knowledge discovery in databases (pp. 694–709). Springer.CrossRef
Metadaten
Titel
Study on CO2 Emission Assessment of Heavy-Duty and Ultra-Heavy-Duty Vehicles Using Machine Learning
verfasst von
Seokho Moon
Jinhee Lee
Hyung Jun Kim
Jung Hwan Kim
Suhan Park
Publikationsdatum
15.02.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 3/2024
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00051-5

Weitere Artikel der Ausgabe 3/2024

Misfire Detection Index Distinguishing the Difference of the Engine Angular Acceleration Between Two Specified Teeth of the Sensor Wheel

  • Electric, Fuel Cell, and Hybrid Vehicle, Engine and Emissions, Fuels and Lubricants, Heat Transfer, Fluid and Thermal Engineering

Development of Coordinator for Optimal Tireforces Distribution for Vehicle Dynamics Control Considering Nonlinear Tire Characteristics

  • Electric, Fuel Cell, and Hybrid Vehicle, Transmission and Driveline, Vehicle Dynamics and Control

Combined Steering and Braking Collision Avoidance Control Method Based on Model Predictive Control

  • Connected Automated Vehicles and ITS, Electric, Fuel Cell, and Hybrid Vehicle, Vehicle Dynamics and Control

Human–Machine Cooperative Steering Control Based on Non-cooperative Nash Game

  • Chassis, Electrical and Electronics, Vehicle Dynamics and Control

Study on Modeling and Control for a Novel Active Suspension

  • Vehicle Dynamics and Control, Other Fields of Automotive Engineering