Skip to main content
Erschienen in:

08.11.2024 | Connected Automated Vehicles and ITS, Vision and Sensors

Study on Fusion Estimation of Adhesion Coefficient Based on Multimodal Fusion Recognition Strategy

verfasst von: Xiaosong Sun, Yongjie Lu, Yanfeng Wang

Erschienen in: International Journal of Automotive Technology | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Estimation of the coefficient of adhesion for pavement conditions with different material properties is a difficult engineering problem. The study proposes a tripartite fusion estimation technology framework based on vision, pavement unevenness information, and vehicle dynamic response. First, an extended Kalman filter estimator based on seven-degree-of-freedom dynamics and the Dugoff tire model is established to estimate the adhesion coefficient value according to the dynamic response of the vehicle; second, a pavement type fusion recognition strategy based on pavement image information and pavement unevenness information is proposed to realize the pavement unevenness prediction through the nonlinear autoregressive networks with exogenous inputs, correct the pavement type recognition results of GoogLeNet convolutional neural network, and look up the table to get the range of adhesion coefficient prediction. Finally, the spatiotemporal synchronization method of pavement recognition and dynamics estimation and the fusion estimation mechanism of the adhesion coefficient are established to achieve an accurate estimation of the adhesion coefficient. The experimental results show that the proposed method can make up for the dependence of the dynamic estimation on the reliability of observations and sufficient excitation, and is more recognizable to the pavement, which improves the estimation accuracy, convergence, and tracking of the adhesion coefficient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Beal, C. E. (2020). Rapid road friction estimation using independent left/right steering torque measurements. Vehicle System Dynamics, 58, 377–403.MATH Beal, C. E. (2020). Rapid road friction estimation using independent left/right steering torque measurements. Vehicle System Dynamics, 58, 377–403.MATH
Zurück zum Zitat Can, W., Weirui, W., & Ying, C. (2009). Simulation and validation of three-dimensional road surface spectrum. Journal of Zhejiang University: Engineering Science, 43(10), 1935–1938.MATH Can, W., Weirui, W., & Ying, C. (2009). Simulation and validation of three-dimensional road surface spectrum. Journal of Zhejiang University: Engineering Science, 43(10), 1935–1938.MATH
Zurück zum Zitat Chen, J., Liu, Y., Liu, R., Xiao, F., & Huang, J. (2023). Integrated control of braking-yaw-roll stability under steering-braking conditions. Scientific Reports, 13(1), 21110.MATH Chen, J., Liu, Y., Liu, R., Xiao, F., & Huang, J. (2023). Integrated control of braking-yaw-roll stability under steering-braking conditions. Scientific Reports, 13(1), 21110.MATH
Zurück zum Zitat Chen, L., Luo, Y., Bian, M., Qin, Z., Luo, J., & Li, K. (2017). Estimation of tire-road friction coefficient based on frequency domain data fusion. Mechanical Systems and Signal Processing, 85, 177–192.MATH Chen, L., Luo, Y., Bian, M., Qin, Z., Luo, J., & Li, K. (2017). Estimation of tire-road friction coefficient based on frequency domain data fusion. Mechanical Systems and Signal Processing, 85, 177–192.MATH
Zurück zum Zitat Du, Z., Skar, A., Pettinari, M., & Zhu, X. (2023). Pavement friction evaluation based on vehicle dynamics and vision data using a multi-feature fusion network. Transportation Research Record, 2677(11), 219–236. Du, Z., Skar, A., Pettinari, M., & Zhu, X. (2023). Pavement friction evaluation based on vehicle dynamics and vision data using a multi-feature fusion network. Transportation Research Record, 2677(11), 219–236.
Zurück zum Zitat Guo, H., Zhao, X., Liu, J., Dai, Q., Liu, H., & Chen, H. (2023). A fusion estimation of the peak tire–road friction coefficient based on road images and dynamic information. Mechanical Systems and Signal Processing, 189, 110029.MATH Guo, H., Zhao, X., Liu, J., Dai, Q., Liu, H., & Chen, H. (2023). A fusion estimation of the peak tire–road friction coefficient based on road images and dynamic information. Mechanical Systems and Signal Processing, 189, 110029.MATH
Zurück zum Zitat Khaleghian, S., Emami, A., & Taheri, S. (2017). A technical survey on tire-road friction estimation. Friction, 5, 123–146. Khaleghian, S., Emami, A., & Taheri, S. (2017). A technical survey on tire-road friction estimation. Friction, 5, 123–146.
Zurück zum Zitat Lee, A-.S., & Kim, K.-J. (2011). ISO/TC108 Mechanical vibration, shock and condition monitoring: current status on ISO and KS standards. In: The Korean Society for Noise and Vibration Engineering (pp. 357–363). Lee, A-.S., & Kim, K.-J. (2011). ISO/TC108 Mechanical vibration, shock and condition monitoring: current status on ISO and KS standards. In: The Korean Society for Noise and Vibration Engineering (pp. 357–363).
Zurück zum Zitat Leng, B., Jin, D., Xiong, L., Yang, X., & Yu, Z. (2021). Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion. Mechanical Systems and Signal Processing, 150, 107275. Leng, B., Jin, D., Xiong, L., Yang, X., & Yu, Z. (2021). Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion. Mechanical Systems and Signal Processing, 150, 107275.
Zurück zum Zitat Li, L., Yang, K., Jia, G., Ran, X., Song, J., & Han, Z.-Q. (2015). Comprehensive tire–road friction coefficient estimation based on signal fusion method under complex maneuvering operations. Mechanical Systems and Signal Processing, 56, 259–276.MATH Li, L., Yang, K., Jia, G., Ran, X., Song, J., & Han, Z.-Q. (2015). Comprehensive tire–road friction coefficient estimation based on signal fusion method under complex maneuvering operations. Mechanical Systems and Signal Processing, 56, 259–276.MATH
Zurück zum Zitat Liu, B., Zhao, D., & Zhang, H. (2023). Road classification using 3D LiDAR sensor on vehicle. Measurement Science and Technology, 34(6), 065201.MATH Liu, B., Zhao, D., & Zhang, H. (2023). Road classification using 3D LiDAR sensor on vehicle. Measurement Science and Technology, 34(6), 065201.MATH
Zurück zum Zitat Menegazzo, J., & Von Wangenheim, A. (2021). Road surface type classification based on inertial sensors and machine learning: A comparison between classical and deep machine learning approaches for multi-contextual real-world scenarios. Computing, 103(10), 2143–2170.MathSciNetMATH Menegazzo, J., & Von Wangenheim, A. (2021). Road surface type classification based on inertial sensors and machine learning: A comparison between classical and deep machine learning approaches for multi-contextual real-world scenarios. Computing, 103(10), 2143–2170.MathSciNetMATH
Zurück zum Zitat Ngwangwa, H. M., Heyns, P. S., Breytenbach, H. G. A., & Els, P. S. (2014). Reconstruction of road defects and road roughness classification using Artificial Neural Networks simulation and vehicle dynamic responses: application to experimental data. Journal of Terramechanics, 53, 1–18. Ngwangwa, H. M., Heyns, P. S., Breytenbach, H. G. A., & Els, P. S. (2014). Reconstruction of road defects and road roughness classification using Artificial Neural Networks simulation and vehicle dynamic responses: application to experimental data. Journal of Terramechanics, 53, 1–18.
Zurück zum Zitat Ngwangwa, H. M., Heyns, P. S., Labuschagne, F., & Kululanga, G. K. (2010). Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation. Journal of Terramechanics, 47(2), 97–111. Ngwangwa, H. M., Heyns, P. S., Labuschagne, F., & Kululanga, G. K. (2010). Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation. Journal of Terramechanics, 47(2), 97–111.
Zurück zum Zitat Niu, Y., Lu, X., Li, X., Su, W., Meng, Z., & Zhang, S. (2022). Modeling and analysis of runway friction coefficient prediction methods based on multivariable coupling. IEEE Transactions on Instrumentation and Measurement, 71, 1–9.MATH Niu, Y., Lu, X., Li, X., Su, W., Meng, Z., & Zhang, S. (2022). Modeling and analysis of runway friction coefficient prediction methods based on multivariable coupling. IEEE Transactions on Instrumentation and Measurement, 71, 1–9.MATH
Zurück zum Zitat Qi, G., Fan, X., & Li, H. (2023). A comparative study of the recursive least squares and fuzzy logic estimation methods for the measurement of road adhesion coefficient. Australian Journal of Mechanical Engineering, 21(4), 1230–1246.MATH Qi, G., Fan, X., & Li, H. (2023). A comparative study of the recursive least squares and fuzzy logic estimation methods for the measurement of road adhesion coefficient. Australian Journal of Mechanical Engineering, 21(4), 1230–1246.MATH
Zurück zum Zitat Rasol, M., Schmidt, F., & Ientile, S. (2023). FriC-PM: Machine Learning-based road surface friction coefficient predictive model using intelligent sensor data. Construction and Building Materials, 370, 130567. Rasol, M., Schmidt, F., & Ientile, S. (2023). FriC-PM: Machine Learning-based road surface friction coefficient predictive model using intelligent sensor data. Construction and Building Materials, 370, 130567.
Zurück zum Zitat Roychowdhury, S., Zhao, M., Wallin, A., Ohlsson, N. and Jonasson, M. (2018). Machine learning models for road surface and friction estimation using front-camera images. IEEE Roychowdhury, S., Zhao, M., Wallin, A., Ohlsson, N. and Jonasson, M. (2018). Machine learning models for road surface and friction estimation using front-camera images. IEEE
Zurück zum Zitat Scientific Research Institute of Traffic Management. (2006). Ministry of Public Security. Technical identification of vehicle traveling speed in typical traffic accident patterns. Ministry of Public Security of the People's Republic of China. Scientific Research Institute of Traffic Management. (2006). Ministry of Public Security. Technical identification of vehicle traveling speed in typical traffic accident patterns. Ministry of Public Security of the People's Republic of China.
Zurück zum Zitat Shi, R., Yang, S., Chen, Y., Wang, R., Zhang, M., Lu, J., & Cao, Y. (2023). CNN-Transformer for visual-tactile fusion applied in road recognition of autonomous vehicles. Pattern Recognition Letters, 166, 200–208.MATH Shi, R., Yang, S., Chen, Y., Wang, R., Zhang, M., Lu, J., & Cao, Y. (2023). CNN-Transformer for visual-tactile fusion applied in road recognition of autonomous vehicles. Pattern Recognition Letters, 166, 200–208.MATH
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015). Going deeper with convolutions. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015). Going deeper with convolutions.
Zurück zum Zitat Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.MATH Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.MATH
Zurück zum Zitat Wang, R., & Wang, J. (2013). Tire–road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Engineering Practice, 21(1), 65–75.MATH Wang, R., & Wang, J. (2013). Tire–road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Engineering Practice, 21(1), 65–75.MATH
Zurück zum Zitat Wang, Y., Hu, J., Wang, F. A., Dong, H., Yan, Y., Ren, Y., Zhou, C., & Yin, G. (2022). Tire road friction coefficient estimation: Review and research perspectives. Chinese Journal of Mechanical Engineering, 35(1), 6.MATH Wang, Y., Hu, J., Wang, F. A., Dong, H., Yan, Y., Ren, Y., Zhou, C., & Yin, G. (2022). Tire road friction coefficient estimation: Review and research perspectives. Chinese Journal of Mechanical Engineering, 35(1), 6.MATH
Zurück zum Zitat Wu, Y., Li, G., & Fan, D. (2021). Joint estimation of driving state and road adhesion coefficient for distributed drive electric vehicle. IEEE Access, 9, 75460–75469.MATH Wu, Y., Li, G., & Fan, D. (2021). Joint estimation of driving state and road adhesion coefficient for distributed drive electric vehicle. IEEE Access, 9, 75460–75469.MATH
Zurück zum Zitat Xiao, F., Hu, J., Jia, M., Zhu, P., & Deng, C. (2022). A novel estimation scheme of tyre–road friction characteristics based on parameter constraints on varied-µ roads. Measurement, 194, 111077. Xiao, F., Hu, J., Jia, M., Zhu, P., & Deng, C. (2022). A novel estimation scheme of tyre–road friction characteristics based on parameter constraints on varied-µ roads. Measurement, 194, 111077.
Zurück zum Zitat Xu, Z., Lu, Y., Chen, N., & Han, Y. (2023). Integrated adhesion coefficient estimation of 3D road surfaces based on dimensionless data-driven tire model. Machines, 11(2), 189.MATH Xu, Z., Lu, Y., Chen, N., & Han, Y. (2023). Integrated adhesion coefficient estimation of 3D road surfaces based on dimensionless data-driven tire model. Machines, 11(2), 189.MATH
Zurück zum Zitat Yang, S., Chen, Y., Shi, R., Wang, R., Cao, Y., & Lu, J. (2022). A survey of intelligent tires for tire-road interaction recognition toward autonomous vehicles. IEEE Transactions on Intelligent Vehicles, 7, 520–532.MATH Yang, S., Chen, Y., Shi, R., Wang, R., Cao, Y., & Lu, J. (2022). A survey of intelligent tires for tire-road interaction recognition toward autonomous vehicles. IEEE Transactions on Intelligent Vehicles, 7, 520–532.MATH
Zurück zum Zitat Yiğit, H., Köylü, H., & Eken, S. (2023). Estimation of road surface type from brake pressure pulses of ABS. Expert Systems with Applications, 212, 118726.MATH Yiğit, H., Köylü, H., & Eken, S. (2023). Estimation of road surface type from brake pressure pulses of ABS. Expert Systems with Applications, 212, 118726.MATH
Zurück zum Zitat Yu, Z. (2009). Automobile theory. China Machine Press.MATH Yu, Z. (2009). Automobile theory. China Machine Press.MATH
Zurück zum Zitat Zhang, G., Wang, X., Li, L., & Zhao, X. (2023a). Tire-road friction estimation for four-wheel independent steering and driving EVs using improved CKF and FNN. IEEE Transactions on Transportation Electrification, 10(1), 823–834.MATH Zhang, G., Wang, X., Li, L., & Zhao, X. (2023a). Tire-road friction estimation for four-wheel independent steering and driving EVs using improved CKF and FNN. IEEE Transactions on Transportation Electrification, 10(1), 823–834.MATH
Zurück zum Zitat Zhang, X., Wang, X., & Gong, X. (2023b). Segmented identification method of tire-road friction coefficient for intelligent vehicles. Automotive Engineering, 45, 1923–1932.MATH Zhang, X., Wang, X., & Gong, X. (2023b). Segmented identification method of tire-road friction coefficient for intelligent vehicles. Automotive Engineering, 45, 1923–1932.MATH
Zurück zum Zitat Zhang, L., Guan, K., Ding, X., & Guo, P. (2023c). Tire-road friction estimation method based on image recognition and dynamics fusion. Automotive Engineering, 45, 1222–34+62.MATH Zhang, L., Guan, K., Ding, X., & Guo, P. (2023c). Tire-road friction estimation method based on image recognition and dynamics fusion. Automotive Engineering, 45, 1222–34+62.MATH
Zurück zum Zitat Zhang, Z., Zheng, L., Wu, H., Zhang, Z., Li, Y., & Liang, Y. (2022). An estimation scheme of road friction coefficient based on novel tyre model and improved SCKF. Vehicle System Dynamics, 60(8), 2775–2804.MATH Zhang, Z., Zheng, L., Wu, H., Zhang, Z., Li, Y., & Liang, Y. (2022). An estimation scheme of road friction coefficient based on novel tyre model and improved SCKF. Vehicle System Dynamics, 60(8), 2775–2804.MATH
Zurück zum Zitat Zhao, T., He, J., Lv, J., Min, D., & Wei, Y. (2023). A comprehensive implementation of road surface classification for vehicle driving assistance: Dataset, models, and deployment. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8361–8370.MATH Zhao, T., He, J., Lv, J., Min, D., & Wei, Y. (2023). A comprehensive implementation of road surface classification for vehicle driving assistance: Dataset, models, and deployment. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8361–8370.MATH
Zurück zum Zitat Zhao, T., & Wei, Y. (2022). A road surface image dataset with detailed annotations for driving assistance applications. Data in Brief, 43, 108483. Zhao, T., & Wei, Y. (2022). A road surface image dataset with detailed annotations for driving assistance applications. Data in Brief, 43, 108483.
Zurück zum Zitat Zhao, Y.-Q., Li, H.-Q., Lin, F., Wang, J., & Ji, X.-W. (2017). Estimation of road friction coefficient in different road conditions based on vehicle braking dynamics. Chinese Journal of Mechanical Engineering, 30, 982–990.MATH Zhao, Y.-Q., Li, H.-Q., Lin, F., Wang, J., & Ji, X.-W. (2017). Estimation of road friction coefficient in different road conditions based on vehicle braking dynamics. Chinese Journal of Mechanical Engineering, 30, 982–990.MATH
Zurück zum Zitat Zhu, Y., Zhang, T., Wang, A., Huang, J., & Wu, X. (2023). Identification of the tire model and road adhesion coefficient based on vehicle dynamic response data and the BP neural network algorithm. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 237(12), 2721–2740.MATH Zhu, Y., Zhang, T., Wang, A., Huang, J., & Wu, X. (2023). Identification of the tire model and road adhesion coefficient based on vehicle dynamic response data and the BP neural network algorithm. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 237(12), 2721–2740.MATH
Metadaten
Titel
Study on Fusion Estimation of Adhesion Coefficient Based on Multimodal Fusion Recognition Strategy
verfasst von
Xiaosong Sun
Yongjie Lu
Yanfeng Wang
Publikationsdatum
08.11.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 2/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00166-9

Weitere Artikel der Ausgabe 2/2025

Iterative Trajectory Prediction Model Based on Interactive Agent

  • Connected Automated Vehicles and ITS, Vision and Sensors

A Study on Abnormal Detection of High-Speed Bearings for Electric Vehicle Drive Systems

  • Body and Safety, Chassis, Human Factors and Ergonomics, Materials and Recycling, Noise, Vibration and Harshness, Transmission and Driveline, Vehicle Dynamics and Control

Study of Cooling Performance of Liquid-Cooled EV Battery Module According to the TIM Compression Ratio

  • Open Access
  • Electric, Fuel Cell, and Hybrid Vehicle, Fuels and Lubricants, Heat Transfer, Fluid and Thermal Engineering, Vision and Sensors