Skip to main content
Erschienen in: Journal of Materials Science 11/2015

01.06.2015 | Original Paper

Study on the surface energies and dispersibility of graphene oxide and its derivatives

verfasst von: Jinfeng Dai, Guojian Wang, Lang Ma, Chengken Wu

Erschienen in: Journal of Materials Science | Ausgabe 11/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent research has highlighted a remarkable growing focus on surface properties and dispersibility of graphene. In this study, we fabricated four types of surface-modified graphene oxide and its derivatives with different C/O ratios by facile chemical methods. The extent of modification, surface energies, and dispersibility of the as-prepared samples were investigated through elemental analysis, X-ray photoelectron spectroscopy, contact angle, inverse gas chromatography, dynamic multiple light scattering method, and atomic force microscope. Results demonstrated that surface energies are affected by functional groups and C/O ratios significantly. The higher the proportion of polar oxygen-containing groups of materials is, the larger the values of polar surface energies and total surface energies are. Dispersibility of graphene oxide and its derivatives depends not only on surface groups and degree of modification of samples, but also on Hansen solubility parameters of solvents. As a result, we proposed a predicted template to screen the ranges of potential graphene solvents. Such a research presented here would facilitate preparation of graphene–polymer composites and development of graphene-based materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
2.
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRef Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRef
3.
Zurück zum Zitat Alexander AB (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef Alexander AB (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef
4.
Zurück zum Zitat Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRef Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRef
5.
Zurück zum Zitat Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347CrossRef Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347CrossRef
6.
Zurück zum Zitat Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200CrossRef Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200CrossRef
7.
Zurück zum Zitat Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9(4):1593–1597CrossRef Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9(4):1593–1597CrossRef
8.
Zurück zum Zitat Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern I (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern I (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef
9.
Zurück zum Zitat Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158CrossRef Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158CrossRef
10.
Zurück zum Zitat Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112(14):5263–5266CrossRef Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112(14):5263–5266CrossRef
11.
Zurück zum Zitat Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857CrossRef Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857CrossRef
12.
Zurück zum Zitat Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232CrossRef Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232CrossRef
13.
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef
14.
Zurück zum Zitat Fernández-Merinoa MJ, Paredes J, Villar-Rodil S, Guardia L, Solís-Fernándeza P, Salinas-Torres D, Cazorla-Amorósb D, Morallónb E, Martínez-Alonsoa A, Tascóna J (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 50(9):3184–3194CrossRef Fernández-Merinoa MJ, Paredes J, Villar-Rodil S, Guardia L, Solís-Fernándeza P, Salinas-Torres D, Cazorla-Amorósb D, Morallónb E, Martínez-Alonsoa A, Tascóna J (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 50(9):3184–3194CrossRef
15.
Zurück zum Zitat Sham AY, Notley SM (2013) A review of fundamental properties and applications of polymer-graphene hybrid materials. Soft Matter 9(29):6645–6653CrossRef Sham AY, Notley SM (2013) A review of fundamental properties and applications of polymer-graphene hybrid materials. Soft Matter 9(29):6645–6653CrossRef
16.
Zurück zum Zitat Ayán-Varela M, Paredes JI, Villar-Rodil S, Rozada R, Martínez-Alonso A, Tascón JMD (2014) A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. Carbon 75:390–400CrossRef Ayán-Varela M, Paredes JI, Villar-Rodil S, Rozada R, Martínez-Alonso A, Tascón JMD (2014) A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. Carbon 75:390–400CrossRef
17.
Zurück zum Zitat Hansen CM (2007) Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC Press, HobokenCrossRef Hansen CM (2007) Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC Press, HobokenCrossRef
18.
Zurück zum Zitat Burke J (1984) Solubility parameters: theory and application. The Book and Paper Group Annual 3:13–58 Burke J (1984) Solubility parameters: theory and application. The Book and Paper Group Annual 3:13–58
19.
Zurück zum Zitat Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem Res 56(12):40–52CrossRef Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem Res 56(12):40–52CrossRef
20.
Zurück zum Zitat Das SC, Larson I, Morton DAV, Stewart PJ (2011) Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography. Langmuir 27(2):521–523CrossRef Das SC, Larson I, Morton DAV, Stewart PJ (2011) Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography. Langmuir 27(2):521–523CrossRef
21.
Zurück zum Zitat Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun Z, Windle AH, Ryan P, Niraj NPP, Wang Z-TT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20(10):1876–1881CrossRef Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun Z, Windle AH, Ryan P, Niraj NPP, Wang Z-TT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20(10):1876–1881CrossRef
22.
Zurück zum Zitat Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano 3(8):2340–2350CrossRef Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano 3(8):2340–2350CrossRef
23.
Zurück zum Zitat Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721CrossRef Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721CrossRef
24.
Zurück zum Zitat Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRef Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRef
25.
Zurück zum Zitat Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213CrossRef Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213CrossRef
26.
Zurück zum Zitat Shih CJ, Lin SC, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648CrossRef Shih CJ, Lin SC, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648CrossRef
27.
Zurück zum Zitat Yi M, Shen Z, Zhang X, Ma S (2013) Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J Phys D Appl Phys 46(2):025301CrossRef Yi M, Shen Z, Zhang X, Ma S (2013) Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J Phys D Appl Phys 46(2):025301CrossRef
28.
Zurück zum Zitat Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46(1):14–22CrossRef Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46(1):14–22CrossRef
29.
Zurück zum Zitat Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081CrossRef Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081CrossRef
30.
Zurück zum Zitat Shih C-J, Strano MS, Blankschtein D (2013) Wetting translucency of graphene. Nat Mater 12(10):866–869CrossRef Shih C-J, Strano MS, Blankschtein D (2013) Wetting translucency of graphene. Nat Mater 12(10):866–869CrossRef
31.
Zurück zum Zitat Dai JF, Wang GJ, Wu CK (2014) Investigation of the surface properties of graphene oxide and graphene by inverse gas chromatography. Chromatographia 77(3–4):299–307CrossRef Dai JF, Wang GJ, Wu CK (2014) Investigation of the surface properties of graphene oxide and graphene by inverse gas chromatography. Chromatographia 77(3–4):299–307CrossRef
32.
Zurück zum Zitat Lazar P, Karlický F, Jurečka P, Kocman M, Otyepková E, Šafářová K, Otyepka M (2013) Adsorption of small organic molecules on graphene. JACS 135(16):6372–6377CrossRef Lazar P, Karlický F, Jurečka P, Kocman M, Otyepková E, Šafářová K, Otyepka M (2013) Adsorption of small organic molecules on graphene. JACS 135(16):6372–6377CrossRef
33.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef
34.
Zurück zum Zitat Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRef Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRef
35.
Zurück zum Zitat Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic press, Rockford Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic press, Rockford
36.
Zurück zum Zitat Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544CrossRef Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544CrossRef
37.
Zurück zum Zitat Laub RJ (1980) Physicochemical measurement by gas chromatography. J High Resolut Chromatogr 3(9):486–486CrossRef Laub RJ (1980) Physicochemical measurement by gas chromatography. J High Resolut Chromatogr 3(9):486–486CrossRef
38.
Zurück zum Zitat Santos JMRCA, Guthrie JT (2005) Study of a core-shell type impact modifier by inverse gas chromatography. J Chromatogr A 1070(1–2):147–154CrossRef Santos JMRCA, Guthrie JT (2005) Study of a core-shell type impact modifier by inverse gas chromatography. J Chromatogr A 1070(1–2):147–154CrossRef
39.
Zurück zum Zitat Dong S, Brendlé M, Donnet JB (1989) Study of solid surface polarity by inverse gas chromatography at infinite dilution. Chromatographia 28(9–10):469–472CrossRef Dong S, Brendlé M, Donnet JB (1989) Study of solid surface polarity by inverse gas chromatography at infinite dilution. Chromatographia 28(9–10):469–472CrossRef
40.
Zurück zum Zitat Dorris GM, Gray DG (1980) Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Interface Sci 77(2):353–362CrossRef Dorris GM, Gray DG (1980) Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Interface Sci 77(2):353–362CrossRef
41.
Zurück zum Zitat Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941CrossRef Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941CrossRef
42.
Zurück zum Zitat Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents: physical properties and methods of purification, 4th edn. Wiley, New York Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents: physical properties and methods of purification, 4th edn. Wiley, New York
43.
Zurück zum Zitat Kim H-S, Park W-I, Kang M, Jin H-J (2008) Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J Phys Chem Solids 69(5–6):1209–1212CrossRef Kim H-S, Park W-I, Kang M, Jin H-J (2008) Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J Phys Chem Solids 69(5–6):1209–1212CrossRef
44.
Zurück zum Zitat Wiśniewska M, Chibowski S, Urban T (2012) Investigation of the stability of an alumina suspension in the presence of ionic polyacrylamide. Thin Solid Films 520(19):6158–6164CrossRef Wiśniewska M, Chibowski S, Urban T (2012) Investigation of the stability of an alumina suspension in the presence of ionic polyacrylamide. Thin Solid Films 520(19):6158–6164CrossRef
45.
Zurück zum Zitat Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749CrossRef Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749CrossRef
46.
Zurück zum Zitat Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493CrossRef Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493CrossRef
47.
Zurück zum Zitat Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4(11):3515–3522CrossRef Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4(11):3515–3522CrossRef
48.
Zurück zum Zitat Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef
49.
Zurück zum Zitat Lee S, Park J, Koo C, Lim B, Kim S (2008) Self-organized grafting of carbon nanotubes by end-functionalized polymers. Macromol Res 16(3):261–266CrossRef Lee S, Park J, Koo C, Lim B, Kim S (2008) Self-organized grafting of carbon nanotubes by end-functionalized polymers. Macromol Res 16(3):261–266CrossRef
50.
Zurück zum Zitat Papirer E, Brendle E, Ozil F, Balard H (1999) Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37(8):1265–1274CrossRef Papirer E, Brendle E, Ozil F, Balard H (1999) Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37(8):1265–1274CrossRef
Metadaten
Titel
Study on the surface energies and dispersibility of graphene oxide and its derivatives
verfasst von
Jinfeng Dai
Guojian Wang
Lang Ma
Chengken Wu
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8934-z

Weitere Artikel der Ausgabe 11/2015

Journal of Materials Science 11/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.