Skip to main content
Erschienen in: Fire Technology 6/2020

27.02.2020

Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure

verfasst von: Huaibin Wang, Zhiming Du, Ling Liu, Zelin Zhang, Jinyuan Hao, Qinzheng Wang, Shuang Wang

Erschienen in: Fire Technology | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When lithium-ion batteries (LIBs) are located at high altitude and low pressure,the characteristics of thermal runaway (TR) and its propagation are different,such as time to TR, the toxicity of TR gases, TR propagation time, mass loss rate, etc. In this article, the author summarized a series of relevant literatures and proposed an instrument that can be used to analyse the TR behavior at different pressure. It is found that: with the decrease of ambient pressure, the TR trigger time becomes longer and the maximum surface temperature decrease. Moreover, the gas released by TR becomes more toxic as the environmental pressure decreases. Beside, the average propagation time between adjacent LIBs is not much difference when the environmental pressure decreases, and when the 18,650 battery module is distributed in a cylindrical shape, the thermal runaway propagation path is basically unchanged as the environmental pressure decreases. This work details TR and its propagation feature under different pressure, and can provide the guidelines for the Air transportation of LIBs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Zareer M, I Dincer, MA Rosen (2017) Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. J Power Sources 363:291–303CrossRef Al-Zareer M, I Dincer, MA Rosen (2017) Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. J Power Sources 363:291–303CrossRef
2.
Zurück zum Zitat Ye Y et al (2015) Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl Therm Eng 86:281–291CrossRef Ye Y et al (2015) Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl Therm Eng 86:281–291CrossRef
3.
Zurück zum Zitat Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRef Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRef
4.
Zurück zum Zitat Wang Q et al (2016) A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew Sustain Energy Rev 64:106–128CrossRef Wang Q et al (2016) A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew Sustain Energy Rev 64:106–128CrossRef
5.
Zurück zum Zitat Civil Aviation Administration of China (2013) MH/T 1020-2013 Air transport specifications for lithium batteries. Science and Technology of China Press, Beijing Civil Aviation Administration of China (2013) MH/T 1020-2013 Air transport specifications for lithium batteries. Science and Technology of China Press, Beijing
6.
Zurück zum Zitat Organization ICAO (2011) The safe transport of dangerous goods by air: annex 18 to the convention on International Civil Aviation. International Civil AviationOrganization Organization ICAO (2011) The safe transport of dangerous goods by air: annex 18 to the convention on International Civil Aviation. International Civil AviationOrganization
7.
Zurück zum Zitat FAA (2018) Office of Security and Hazardous Materials Safety Lithium Batteries & Lithium Batteries Powered Devices. Federal Aviation Administration, Washington FAA (2018) Office of Security and Hazardous Materials Safety Lithium Batteries & Lithium Batteries Powered Devices. Federal Aviation Administration, Washington
8.
Zurück zum Zitat Du J, Liang XY (2012) On the security risk management of the lithium batteries in air transportation. J Saf Environ 12(6):212–215 Du J, Liang XY (2012) On the security risk management of the lithium batteries in air transportation. J Saf Environ 12(6):212–215
9.
Zurück zum Zitat ICAO (2014) Dangerous goods panel of working group on lithium batteries second meeting. Report of the Meeting. DGP-WG/LB/2-WP/8 ICAO (2014) Dangerous goods panel of working group on lithium batteries second meeting. Report of the Meeting. DGP-WG/LB/2-WP/8
10.
Zurück zum Zitat FAA (2007) Airworthiness Standards: Transport category airplanes, 14 CFR, FARx25.841: Pressurized Cabins FAA (2007) Airworthiness Standards: Transport category airplanes, 14 CFR, FARx25.841: Pressurized Cabins
11.
Zurück zum Zitat ST/SG/AC.10/1/REV13(VO1.I) (2003) Proposal on the transport of dangerous goods [S]. UN ST/SG/AC.10/1/REV13(VO1.I) (2003) Proposal on the transport of dangerous goods [S]. UN
12.
Zurück zum Zitat DOC9284-AN/905 (2012) Technical rules for the safe air transport of dangerous goods [S]. ICAO DOC9284-AN/905 (2012) Technical rules for the safe air transport of dangerous goods [S]. ICAO
13.
Zurück zum Zitat Federal Aviation Administration (2013) Aviation Cargo and passenger baggage incidents involving smoke, fire, extreme heat or explosion. FAA Office of Security and Hazardous Materials Safety Federal Aviation Administration (2013) Aviation Cargo and passenger baggage incidents involving smoke, fire, extreme heat or explosion. FAA Office of Security and Hazardous Materials Safety
14.
Zurück zum Zitat Federal Aviation Administration (2004) In-flight fires, advisory circular. U.S. Department of Transportation, pp 120–80 Federal Aviation Administration (2004) In-flight fires, advisory circular. U.S. Department of Transportation, pp 120–80
15.
Zurück zum Zitat Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M (2019) Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy 246:53–64CrossRef Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M (2019) Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy 246:53–64CrossRef
16.
Zurück zum Zitat Larsson F, Anderson J, Andersson P, Mellander B-E (2016) Thermal modelling of cell-to-cell fire propagation and cascading thermal runaway failure effects for lithium-ion battery cells and modules using fire walls. J Electrochem Soc 163:A2854–A2865CrossRef Larsson F, Anderson J, Andersson P, Mellander B-E (2016) Thermal modelling of cell-to-cell fire propagation and cascading thermal runaway failure effects for lithium-ion battery cells and modules using fire walls. J Electrochem Soc 163:A2854–A2865CrossRef
17.
Zurück zum Zitat Peng Y, Yang L, Ju X, Liao B, Ye K, Li L, Cao B, Ni B (2019) A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater 381:120916CrossRef Peng Y, Yang L, Ju X, Liao B, Ye K, Li L, Cao B, Ni B (2019) A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater 381:120916CrossRef
18.
Zurück zum Zitat Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, Sun J (2016) Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy 183:659–673CrossRef Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, Sun J (2016) Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy 183:659–673CrossRef
19.
Zurück zum Zitat Zhong G, Li H, Wang C, Xu K, Wang Q (2018) Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules. J Electrochem Soc 165: A1925–A1934CrossRef Zhong G, Li H, Wang C, Xu K, Wang Q (2018) Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules. J Electrochem Soc 165: A1925–A1934CrossRef
20.
Zurück zum Zitat Chen M, Liu J et al (2017) Study of the fire hazards of lithium-ion batteries at different pressures. Appl Therm Eng 125:1061–1074CrossRef Chen M, Liu J et al (2017) Study of the fire hazards of lithium-ion batteries at different pressures. Appl Therm Eng 125:1061–1074CrossRef
21.
Zurück zum Zitat Li C, Yang R, Yao Y et al (2018) Factors affecting the burning rate of pool fire in a depressurization aircraft cargo compartment. Appl Therm Eng 135:350–355CrossRef Li C, Yang R, Yao Y et al (2018) Factors affecting the burning rate of pool fire in a depressurization aircraft cargo compartment. Appl Therm Eng 135:350–355CrossRef
22.
Zurück zum Zitat Hu L, Wang Q, Delichatsios M et al (2013) Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere. Fuel 109:234–240CrossRef Hu L, Wang Q, Delichatsios M et al (2013) Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere. Fuel 109:234–240CrossRef
23.
Zurück zum Zitat Jun F, Yu C Y, Ran T, et al (2008) The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires. J Hazard Mater 154(1–3):476–483CrossRef Jun F, Yu C Y, Ran T, et al (2008) The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires. J Hazard Mater 154(1–3):476–483CrossRef
24.
Zurück zum Zitat Tu R, Zeng Y, Fang J et al (2016) Low air pressure effects on burning rates of ethanol and n-heptane pool fires under various feedback mechanisms of heat. Appl Therm Eng 99:545–549CrossRef Tu R, Zeng Y, Fang J et al (2016) Low air pressure effects on burning rates of ethanol and n-heptane pool fires under various feedback mechanisms of heat. Appl Therm Eng 99:545–549CrossRef
25.
Zurück zum Zitat Sun Q (2018) The study of lithium-ion batteries fire propagation characteristics in a low-pressure environment. Civil Aviation Flight University of China, Deyang Sun Q (2018) The study of lithium-ion batteries fire propagation characteristics in a low-pressure environment. Civil Aviation Flight University of China, Deyang
26.
Zurück zum Zitat Han X (2019) Study on burning explosion characteristics of lithium ion batteries in a confined space. Civil Aviation Flight University of China, Deyang Han X (2019) Study on burning explosion characteristics of lithium ion batteries in a confined space. Civil Aviation Flight University of China, Deyang
27.
Zurück zum Zitat Fu Y et al (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 161:38–45CrossRef Fu Y et al (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 161:38–45CrossRef
28.
Zurück zum Zitat Deng ZB, Ying BS (2018) Analyses on lithium-ion battery thermal runaway in low pressure environment. Sci Technol Eng 18 (18):328–331 Deng ZB, Ying BS (2018) Analyses on lithium-ion battery thermal runaway in low pressure environment. Sci Technol Eng 18 (18):328–331
29.
Zurück zum Zitat Zhuang BSH (2018) The research of lithium-ion battery thermal runaway in low pressure environment. Civil Aviation Flight University of China, Deyang Zhuang BSH (2018) The research of lithium-ion battery thermal runaway in low pressure environment. Civil Aviation Flight University of China, Deyang
30.
Zurück zum Zitat Koch S, Fill A, Birke KP (2018) Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J Power Sources 398:106–112CrossRef Koch S, Fill A, Birke KP (2018) Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J Power Sources 398:106–112CrossRef
Metadaten
Titel
Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
verfasst von
Huaibin Wang
Zhiming Du
Ling Liu
Zelin Zhang
Jinyuan Hao
Qinzheng Wang
Shuang Wang
Publikationsdatum
27.02.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2020
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-00963-5

Weitere Artikel der Ausgabe 6/2020

Fire Technology 6/2020 Zur Ausgabe