Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 3/2022

01.03.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Studying the Effect of Strong Magnetic Fields on the Phase Transitions of the Frustrated Potts Model with a Number of Spin States q = 4

verfasst von: M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, M. K. Mazagaeva, A. A. Murtazaeva

Erschienen in: Physics of Metals and Metallography | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The phase transitions and thermodynamic properties of the two-dimensional Potts model with a number of spin states q = 4 are studied on the basis of a replica algorithm by the Monte Carlo method on a hexagonal lattice with consideration for the interaction between the first and second nearest neighbors in an external magnetic field. The studies are performed for magnetic field values within a range 0.0 ≤ h ≤ 7.0 with a step of 1.0. The magnetic structures of the ground states are constructed. It is revealed that a first-order phase transition occurs within the considered range of magnetic field values. It is demonstrated that magnetic field within a range 4.0 ≤ h ≤ 7.0 lifts the ground state degeneracy, and the phase transition becomes smeared.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624. H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624.
2.
Zurück zum Zitat R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982; Mir, Moscow, 1985). R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982; Mir, Moscow, 1985).
3.
Zurück zum Zitat F. Y. Wu, Exactly Solved Models. A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008). F. Y. Wu, Exactly Solved Models. A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008).
4.
5.
Zurück zum Zitat W. Zhang and Y. Deng, “Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions,” Phys. Rev. E 78, 031103 (2008). CrossRef W. Zhang and Y. Deng, “Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions,” Phys. Rev. E 78, 031103 (2008). CrossRef
6.
Zurück zum Zitat R. Masrour and A. Jabar, “Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: a Monte Carlo simulation,” Phys. A 515, 270–278 (2019). CrossRef R. Masrour and A. Jabar, “Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: a Monte Carlo simulation,” Phys. A 515, 270–278 (2019). CrossRef
7.
Zurück zum Zitat R. Masrour and A. Jabar, “Magnetic properties in stacked triangular lattice: Monte Carlo approach,” Phys. A 491, 926–934 (2018). CrossRef R. Masrour and A. Jabar, “Magnetic properties in stacked triangular lattice: Monte Carlo approach,” Phys. A 491, 926–934 (2018). CrossRef
8.
Zurück zum Zitat S. E. Korshunov, “Phase transitions in two-dimensional systems with continuous degeneracy,” Phys. Usp. 49, 225–262 (2006). CrossRef S. E. Korshunov, “Phase transitions in two-dimensional systems with continuous degeneracy,” Phys. Usp. 49, 225–262 (2006). CrossRef
9.
Zurück zum Zitat A. Malakis, P. Kalozoumis, and N. Tyraskis, “Monte Carlo studies of the square Ising model with next-nearest-neighbor interactions,” Eur. Phys. J. B 50, 63–67 (2006). CrossRef A. Malakis, P. Kalozoumis, and N. Tyraskis, “Monte Carlo studies of the square Ising model with next-nearest-neighbor interactions,” Eur. Phys. J. B 50, 63–67 (2006). CrossRef
10.
Zurück zum Zitat S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, “New magnetic states in crystals,” Phys. Usp. 48, 83–90 (2005). CrossRef S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, “New magnetic states in crystals,” Phys. Usp. 48, 83–90 (2005). CrossRef
11.
Zurück zum Zitat M. Kazuaki and O. Yukiyasu, “Dynamical scaling analysis of symmetry breaking for the antiferromagnetic triangular Heisenberg model in a uniform magnetic field,” Phys. Rev. B 101, 184427(7) (2020). M. Kazuaki and O. Yukiyasu, “Dynamical scaling analysis of symmetry breaking for the antiferromagnetic triangular Heisenberg model in a uniform magnetic field,” Phys. Rev. B 101, 184427(7) (2020).
12.
Zurück zum Zitat A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019). CrossRef A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019). CrossRef
13.
Zurück zum Zitat M. K. Ramazanov and A. K. Murtazaev, “Phase diagram of the antiferromagnetic Heisenberg model on a cubic lattice,” JETP Lett. 109, 589–593 (2019). CrossRef M. K. Ramazanov and A. K. Murtazaev, “Phase diagram of the antiferromagnetic Heisenberg model on a cubic lattice,” JETP Lett. 109, 589–593 (2019). CrossRef
14.
Zurück zum Zitat A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction,” Low Temp. Phys. 45, 1263–1266 (2019). CrossRef A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction,” Low Temp. Phys. 45, 1263–1266 (2019). CrossRef
15.
Zurück zum Zitat M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and M. A. Magomedov, “Critical properties of the Ising model in a magnetic field,” Low Temp. Phys. 46, 693 (2020). CrossRef M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and M. A. Magomedov, “Critical properties of the Ising model in a magnetic field,” Low Temp. Phys. 46, 693 (2020). CrossRef
16.
Zurück zum Zitat A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and critical properties of the Heisenberg antiferromagnetic model on a body-centered cubic lattice with second nearest neighbor interaction,” J. Exp. Theor. Phys. 129, 903–910 (2019). CrossRef A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and critical properties of the Heisenberg antiferromagnetic model on a body-centered cubic lattice with second nearest neighbor interaction,” J. Exp. Theor. Phys. 129, 903–910 (2019). CrossRef
17.
Zurück zum Zitat M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the Potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980). CrossRef M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the Potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980). CrossRef
18.
Zurück zum Zitat J. L. Cardy, M. Nauenberg, and D. J. Scalapino, “Scaling theory of the Potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980). CrossRef J. L. Cardy, M. Nauenberg, and D. J. Scalapino, “Scaling theory of the Potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980). CrossRef
19.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Phys. A 521, 543–550 (2019). CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Phys. A 521, 543–550 (2019). CrossRef
20.
Zurück zum Zitat H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, “Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros,” J. Phys. A 31, 2287–2310 (1998). CrossRef H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, “Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros,” J. Phys. A 31, 2287–2310 (1998). CrossRef
21.
Zurück zum Zitat F. A. Kassan-Ogly and A. I. Proshkin, “Frustrations and ordering in magnetic systems of various dimensions,” Phys. Solid State 60, 1090–1097 (2018). CrossRef F. A. Kassan-Ogly and A. I. Proshkin, “Frustrations and ordering in magnetic systems of various dimensions,” Phys. Solid State 60, 1090–1097 (2018). CrossRef
22.
Zurück zum Zitat A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, “Phase transitions and thermodynamic properties of the Potts model with spin states number q = 4 on a hexagonal lattice,” J. Exp. Theor. Phys. 129, 421–425 (2019). CrossRef A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, “Phase transitions and thermodynamic properties of the Potts model with spin states number q = 4 on a hexagonal lattice,” J. Exp. Theor. Phys. 129, 421–425 (2019). CrossRef
23.
Zurück zum Zitat A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and the thermodynamic properties of the Potts model with the number of spin states q = 4 on a triangular lattice,” Phys. Solid State 61, 2172–2176 (2019). CrossRef A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and the thermodynamic properties of the Potts model with the number of spin states q = 4 on a triangular lattice,” Phys. Solid State 61, 2172–2176 (2019). CrossRef
24.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors,” Phys. Solid State 62, 499–503 (2020). CrossRef M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors,” Phys. Solid State 62, 499–503 (2020). CrossRef
25.
Zurück zum Zitat M. G. Townsend, G. Longworth, and E. Roudaut, “Triangular-spin, kagome plane in jarosites,” Phys. Rev. B 33, 4919–4926 (1986). CrossRef M. G. Townsend, G. Longworth, and E. Roudaut, “Triangular-spin, kagome plane in jarosites,” Phys. Rev. B 33, 4919–4926 (1986). CrossRef
26.
Zurück zum Zitat Y. Chiaki and O. Yutaka, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang–Landau algorithm,” J. Phys. A: Math. Gen. 34, 8781–8794 (2001). CrossRef Y. Chiaki and O. Yutaka, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang–Landau algorithm,” J. Phys. A: Math. Gen. 34, 8781–8794 (2001). CrossRef
27.
Zurück zum Zitat A. K. Murtazaev, F. A. Kassan-Ogly, M. K. Ramazanov, and K. Sh. Murtazaev, “Study of phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice by Monte Carlo simulation,” Phys. Met. Metallogr. 121, 346–351 (2020). CrossRef A. K. Murtazaev, F. A. Kassan-Ogly, M. K. Ramazanov, and K. Sh. Murtazaev, “Study of phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice by Monte Carlo simulation,” Phys. Met. Metallogr. 121, 346–351 (2020). CrossRef
28.
Zurück zum Zitat A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramaza-nov, “Phase diagram of the antiferromagnetic Heisenberg model on a bcc lattice with competing first and second neighbor interactions,” Phys. A 545, 123548(6) (2020). A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramaza-nov, “Phase diagram of the antiferromagnetic Heisenberg model on a bcc lattice with competing first and second neighbor interactions,” Phys. A 545, 123548(6) (2020).
29.
Zurück zum Zitat A. K. Murtazaev, F. A. Kassan-Ogly, M. L. Ramazanov, and K. Sh. Murtazaev, “Phase diagram of the antiferromagnetic Potts model with number q = 4 of spin states in the hexagonal lattice,” Phys. Met. Metallogr. 122, 428–433 (2021). CrossRef A. K. Murtazaev, F. A. Kassan-Ogly, M. L. Ramazanov, and K. Sh. Murtazaev, “Phase diagram of the antiferromagnetic Potts model with number q = 4 of spin states in the hexagonal lattice,” Phys. Met. Metallogr. 122, 428–433 (2021). CrossRef
30.
Zurück zum Zitat A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for molecular simulations of biopolymers,” Biopolymers (Pept. Sci.) 60, 96–123 (2001). A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for molecular simulations of biopolymers,” Biopolymers (Pept. Sci.) 60, 96–123 (2001).
31.
Zurück zum Zitat F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101–1–056101–16 (2001). F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101–1–056101–16 (2001).
32.
Zurück zum Zitat F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001). CrossRef F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001). CrossRef
33.
Zurück zum Zitat F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 24, 3418–3421 (2012). CrossRef F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 24, 3418–3421 (2012). CrossRef
34.
Zurück zum Zitat F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third- neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015). CrossRef F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third- neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015). CrossRef
35.
Zurück zum Zitat A. I. Proshkin and F. A. Kassan-Ogly, “Frustration and phase transitions in Ising model on decorated square lattice,” Phys. Met. Metallogr. 120, 1366–1372 (2019). CrossRef A. I. Proshkin and F. A. Kassan-Ogly, “Frustration and phase transitions in Ising model on decorated square lattice,” Phys. Met. Metallogr. 120, 1366–1372 (2019). CrossRef
36.
Zurück zum Zitat F. A. Kassan-Ogly and A. I. Proshkin, “Ising model on planar decorated lattices. Frustrations and their influence on phase transitions,” Phys. Met. Metallogr. 120, 1359–1365 (2019). CrossRef F. A. Kassan-Ogly and A. I. Proshkin, “Ising model on planar decorated lattices. Frustrations and their influence on phase transitions,” Phys. Met. Metallogr. 120, 1359–1365 (2019). CrossRef
Metadaten
Titel
Studying the Effect of Strong Magnetic Fields on the Phase Transitions of the Frustrated Potts Model with a Number of Spin States q = 4
verfasst von
M. K. Ramazanov
A. K. Murtazaev
M. A. Magomedov
M. K. Mazagaeva
A. A. Murtazaeva
Publikationsdatum
01.03.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 3/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030085

Weitere Artikel der Ausgabe 3/2022

Physics of Metals and Metallography 3/2022 Zur Ausgabe