Skip to main content

2020 | OriginalPaper | Buchkapitel

SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation

verfasst von : Liping Yi, Jinsong Zhang, Rui Zhang, Jiaqi Shi, Gang Wang, Xiaoguang Liu

Erschienen in: Artificial Neural Networks and Machine Learning – ICANN 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using deep learning for semantic segmentation of medical images is a popular topic of wise medical. The premise of training an efficient deep learning model is to have a large number of medical images with annotations. Most medical images are scattered in hospitals or research institutions, and professionals such as doctors always don’t have enough time to label the images. Besides, due to the constraints of privacy protection regulations like GDPR, sharing data directly between multiple institutions is prohibited. To solve the obstacles above, we propose an efficient federated learning model SU-Net for brain tumor segmentation. We introduce inception module and dense block into standard U-Net to comprise our SU-Net with multi-scale receptive fields and information reusing. We conduct experiments on the LGG (Low-Grade Glioma) Segmentation dataset “Brain MRI Segmentation” in Kaggle. The results show that, in non-federated scenario, SU-Net achieves a AUC (Area Under Curve which measures classification accuracy) of \(99.7\%\) and a DSC (Dice Similarity Coefficient which measures segmentation accuracy) of \(78.5\%\), which are remarkably higher than the state-of-the-art semantic segmentation model DeepLabv3+ and the classical model U-Net dedicated to semantic segmentation of medical images. In federated scenario, SU-Net still outperforms the baselines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bonawitz, K., et al.: Towards federated learning at scale: system design. In: Proceedings of SysML (2019) Bonawitz, K., et al.: Towards federated learning at scale: system design. In: Proceedings of SysML (2019)
3.
Zurück zum Zitat Buda, M., Saha, A., Mazurowski, M.A.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Trans. Comput. Biol. Med. 109, 218–225 (2019)CrossRef Buda, M., Saha, A., Mazurowski, M.A.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Trans. Comput. Biol. Med. 109, 218–225 (2019)CrossRef
4.
Zurück zum Zitat Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Proceedings of ICLR (2014) Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Proceedings of ICLR (2014)
5.
Zurück zum Zitat Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. Trans. TPAMI 40(4), 834–848 (2017)CrossRef Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. Trans. TPAMI 40(4), 834–848 (2017)CrossRef
6.
Zurück zum Zitat Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: Proceedings of ECCV (2017) Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: Proceedings of ECCV (2017)
7.
Zurück zum Zitat Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of ECCV, pp. 801–818 (2018) Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of ECCV, pp. 801–818 (2018)
8.
Zurück zum Zitat Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Proceedings of NIPS, pp. 2843–2851 (2012) Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Proceedings of NIPS, pp. 2843–2851 (2012)
12.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)
13.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 4700–4708 (2017) Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 4700–4708 (2017)
15.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)
16.
Zurück zum Zitat Mazurowski, M.A., et al.: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J. Neurooncol. 133(1), 27–35 (2017). https://doi.org/10.1007/s11060-017-2420-1CrossRef Mazurowski, M.A., et al.: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J. Neurooncol. 133(1), 27–35 (2017). https://​doi.​org/​10.​1007/​s11060-017-2420-1CrossRef
17.
Zurück zum Zitat McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of AIStats (2016) McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of AIStats (2016)
19.
Zurück zum Zitat Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR (2013) Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR (2013)
20.
Zurück zum Zitat Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9CrossRef Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-11723-8_​9CrossRef
21.
Zurück zum Zitat Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of CVPR, pp. 1–9 (2015) Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of CVPR, pp. 1–9 (2015)
22.
Zurück zum Zitat Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR, pp. 2818–2826 (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR, pp. 2818–2826 (2016)
Metadaten
Titel
SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation
verfasst von
Liping Yi
Jinsong Zhang
Rui Zhang
Jiaqi Shi
Gang Wang
Xiaoguang Liu
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-61609-0_60