Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

24.06.2016

Suboptimal Feedback Control of PDEs by Solving HJB Equations on Adaptive Sparse Grids

verfasst von: Jochen Garcke, Axel Kröner

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An approach to solve finite time horizon suboptimal feedback control problems for partial differential equations is proposed by solving dynamic programming equations on adaptive sparse grids. A semi-discrete optimal control problem is introduced and the feedback control is derived from the corresponding value function. The value function can be characterized as the solution of an evolutionary Hamilton–Jacobi Bellman (HJB) equation which is defined over a state space whose dimension is equal to the dimension of the underlying semi-discrete system. Besides a low dimensional semi-discretization it is important to solve the HJB equation efficiently to address the curse of dimensionality. We propose to apply a semi-Lagrangian scheme using spatially adaptive sparse grids. Sparse grids allow the discretization of the value functions in (higher) space dimensions since the curse of dimensionality of full grid methods arises to a much smaller extent. For additional efficiency an adaptive grid refinement procedure is explored. The approach is illustrated for the wave equation and an extension to equations of Schrödinger type is indicated. We present several numerical examples studying the effect the parameters characterizing the sparse grid have on the accuracy of the value function and the optimal trajectory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alla, A., Falcone, M.: An adaptive POD approximation method for the control of advection-diffusion equations. Int. Ser. Numer. Math. 164, 1–17 (2013)MATH Alla, A., Falcone, M.: An adaptive POD approximation method for the control of advection-diffusion equations. Int. Ser. Numer. Math. 164, 1–17 (2013)MATH
2.
Zurück zum Zitat Alla, A., Falcone, M., Kalise, D.: HJB-POD based feedback design approach for the wave equation. Bull. Braz. Math. Soc. 47(1), 51–64 (2016)MathSciNetCrossRefMATH Alla, A., Falcone, M., Kalise, D.: HJB-POD based feedback design approach for the wave equation. Bull. Braz. Math. Soc. 47(1), 51–64 (2016)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (2008)MATH Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (2008)MATH
5.
Zurück zum Zitat Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)MathSciNetMATH Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)MathSciNetMATH
6.
Zurück zum Zitat Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation (Model reduction for parametric systems using balanced truncation and interpolation). at-Automatisierungstechnik 578, 411–420 (2009) Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation (Model reduction for parametric systems using balanced truncation and interpolation). at-Automatisierungstechnik 578, 411–420 (2009)
7.
Zurück zum Zitat Beauchard, K., Nersesyan, V.: Semi-global weak stabilization of bilinear Schrödinger equations. C. R. Math. 348(19–20), 1073–1078 (2010)MathSciNetCrossRefMATH Beauchard, K., Nersesyan, V.: Semi-global weak stabilization of bilinear Schrödinger equations. C. R. Math. 348(19–20), 1073–1078 (2010)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48(7), 4292–4316 (2010)MathSciNetCrossRefMATH Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48(7), 4292–4316 (2010)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton–Jacobi Bellman equations. J. Sci. Comput. 55(3), 575–605 (2013)MathSciNetCrossRefMATH Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton–Jacobi Bellman equations. J. Sci. Comput. 55(3), 575–605 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Buse, G.: Exploiting Many-Core Architectures for Dimensionally Adaptive Sparse Grids. Dissertation, Institut für Informatik, Technische Universität München, München (2015) Buse, G.: Exploiting Many-Core Architectures for Dimensionally Adaptive Sparse Grids. Dissertation, Institut für Informatik, Technische Universität München, München (2015)
13.
Zurück zum Zitat Carlini, E., Falcone, M., Ferretti, R.: An efficient algorithm for Hamilton–Jacobi equations in high dimension. Comput. Vis. Sci. 7(1), 15–29 (2004)MathSciNetCrossRefMATH Carlini, E., Falcone, M., Ferretti, R.: An efficient algorithm for Hamilton–Jacobi equations in high dimension. Comput. Vis. Sci. 7(1), 15–29 (2004)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)MathSciNetCrossRefMATH Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi equations. In: Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2013) Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi equations. In: Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2013)
16.
Zurück zum Zitat Ferretti, R.: Internal approximation schemes for optimal control problems in Hilbert spaces. J. Math. Syst. Estim. Control 7(1), 1–25 (1997)MathSciNetMATH Ferretti, R.: Internal approximation schemes for optimal control problems in Hilbert spaces. J. Math. Syst. Estim. Control 7(1), 1–25 (1997)MathSciNetMATH
17.
Zurück zum Zitat Feuersänger, C.: Sparse Grid Methods for Higher Dimensional Approximation. Dissertation, Institut für Numerische Simulation, Universität Bonn (2010) Feuersänger, C.: Sparse Grid Methods for Higher Dimensional Approximation. Dissertation, Institut für Numerische Simulation, Universität Bonn (2010)
18.
Zurück zum Zitat Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. In: Stochastic Modelling and Applied Probability. Springer, New York (2006) Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. In: Stochastic Modelling and Applied Probability. Springer, New York (2006)
19.
Zurück zum Zitat Garcke, J.: Sparse grids in a nutshell. In: Garcke, J., Griebel, M. (eds.) Sparse Arids and Applications. Lecture Notes in Computational Science and Engineering, vol. 88, pp. 57–80. Springer, Berlin (2012) Garcke, J.: Sparse grids in a nutshell. In: Garcke, J., Griebel, M. (eds.) Sparse Arids and Applications. Lecture Notes in Computational Science and Engineering, vol. 88, pp. 57–80. Springer, Berlin (2012)
20.
Zurück zum Zitat Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165(2), 694–716 (2000)MathSciNetCrossRefMATH Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165(2), 694–716 (2000)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Gibson, J.S.: An analysis of optimal modal regulation: convergence and stability. SIAM J. Control Optim. 19(5), 686–707 (1981)MathSciNetCrossRefMATH Gibson, J.S.: An analysis of optimal modal regulation: convergence and stability. SIAM J. Control Optim. 19(5), 686–707 (1981)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gombao, S.: Approximation of optimal controls for semilinear parabolic PDE by solving Hamilton–Jacobi–Bellman equations. In: Proceedings of the 15th International Symposium on the Mathematical Theory of Networks and Systems, of Notre Dame, South Bend, IN, USA (2002) Gombao, S.: Approximation of optimal controls for semilinear parabolic PDE by solving Hamilton–Jacobi–Bellman equations. In: Proceedings of the 15th International Symposium on the Mathematical Theory of Networks and Systems, of Notre Dame, South Bend, IN, USA (2002)
23.
Zurück zum Zitat Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations, Notes on Numerical Fluid Mechanics, vol. 31, pp. 94–100. Vieweg, Braunschweig (1991) Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations, Notes on Numerical Fluid Mechanics, vol. 31, pp. 94–100. Vieweg, Braunschweig (1991)
24.
25.
Zurück zum Zitat Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)MathSciNetCrossRefMATH Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computer Science Engineering, vol. 45, pp. 261–306. Springer, Berlin (2005) Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computer Science Engineering, vol. 45, pp. 261–306. Springer, Berlin (2005)
27.
Zurück zum Zitat Horowitz, M.B., Damle, A., Burdick, J.W.: Linear Hamilton Jacobi Bellman equations in high dimensions. In: IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 5880–5887 (2014) Horowitz, M.B., Damle, A., Burdick, J.W.: Linear Hamilton Jacobi Bellman equations in high dimensions. In: IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 5880–5887 (2014)
28.
Zurück zum Zitat Hu, C., Shu, C.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(2), 666–690 (1999)MathSciNetCrossRefMATH Hu, C., Shu, C.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(2), 666–690 (1999)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Ishii, H.: Uniqueness of unbounded viscosity solution of Hamilton–Jacobi equations. Indiana Univ. Math. J. 33(5), 721–748 (1984)MathSciNetCrossRefMATH Ishii, H.: Uniqueness of unbounded viscosity solution of Hamilton–Jacobi equations. Indiana Univ. Math. J. 33(5), 721–748 (1984)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Kröner, A., Kunisch, K., Zidani, H.: Optimal feedback control of the undamped wave equation by solving a HJB equation. ESAIM Control Optim. Calc. Var. 21(2), 442–464 (2015)MathSciNetCrossRefMATH Kröner, A., Kunisch, K., Zidani, H.: Optimal feedback control of the undamped wave equation by solving a HJB equation. ESAIM Control Optim. Calc. Var. 21(2), 442–464 (2015)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4, 701–722 (2004)MathSciNetCrossRefMATH Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4, 701–722 (2004)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Kunisch, K., Xie, L.: POD-based feedback control of the Burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49, 1113–1126 (2005)MathSciNetCrossRefMATH Kunisch, K., Xie, L.: POD-based feedback control of the Burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49, 1113–1126 (2005)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Lasiecka, I., Trigginai, R.: Control of Partial Differential Equations: Continuous and Approximation Theories, vol. I. Cambridge University Press, Cambridge (2000)CrossRef Lasiecka, I., Trigginai, R.: Control of Partial Differential Equations: Continuous and Approximation Theories, vol. I. Cambridge University Press, Cambridge (2000)CrossRef
35.
Zurück zum Zitat Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)CrossRefMATH Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)CrossRefMATH
36.
Zurück zum Zitat Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1971) Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1971)
37.
Zurück zum Zitat Mirrahimi, M., Handel, R.V.: Stabilizing feedback controls for quantum systems. SIAM J. Control Optim. 46(2), 445–467 (2007)MathSciNetCrossRefMATH Mirrahimi, M., Handel, R.V.: Stabilizing feedback controls for quantum systems. SIAM J. Control Optim. 46(2), 445–467 (2007)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41(11), 1987–1994 (2005)MathSciNetCrossRefMATH Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41(11), 1987–1994 (2005)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Morris, K.A.: Control of systems governed by partial differential equations. In: Levine, W.S. (ed.) The IEEE Control Theory Handbook. CRC Press, Boca Raton (2010) Morris, K.A.: Control of systems governed by partial differential equations. In: Levine, W.S. (ed.) The IEEE Control Theory Handbook. CRC Press, Boca Raton (2010)
40.
Zurück zum Zitat Novak, E., Ritter, K.: Global optimization using hyperbolic cross points. In: Floudas, C.A. (eds.) State of the Art in Global Optimization: Computational Methods and Applications. Nonconvex Optim. Appl., vol. 7, pp. 19–33. Kluwer, Dordrecht (1996) Novak, E., Ritter, K.: Global optimization using hyperbolic cross points. In: Floudas, C.A. (eds.) State of the Art in Global Optimization: Computational Methods and Applications. Nonconvex Optim. Appl., vol. 7, pp. 19–33. Kluwer, Dordrecht (1996)
41.
Zurück zum Zitat Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)MathSciNetCrossRefMATH Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Peherstorfer, B., Zimmer, S., Bungartz, H.-J.: Model reduction with the reduced basis method and sparse grids. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications. LNCSE, vol. 88, pp. 223–242. Springer, Berlin (2013) (English) Peherstorfer, B., Zimmer, S., Bungartz, H.-J.: Model reduction with the reduced basis method and sparse grids. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications. LNCSE, vol. 88, pp. 223–242. Springer, Berlin (2013) (English)
43.
Zurück zum Zitat Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Dissertation, Institut für Informatik, Technische Universität München, München (2010) Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Dissertation, Institut für Informatik, Technische Universität München, München (2010)
44.
Zurück zum Zitat Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk. SSSR 148, 1042–1043 (1963) (Russian), Engl. Transl.: Soviet Math. Dokl. 4:240–243 (1963) Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk. SSSR 148, 1042–1043 (1963) (Russian), Engl. Transl.: Soviet Math. Dokl. 4:240–243 (1963)
45.
Zurück zum Zitat Springer, R.: Lösung von Hamilton–Jacobi–Bellman–Gleichungen auf dünnen Gittern. Diplomarbeit, University Chemnitz (2013) Springer, R.: Lösung von Hamilton–Jacobi–Bellman–Gleichungen auf dünnen Gittern. Diplomarbeit, University Chemnitz (2013)
46.
Zurück zum Zitat Warin, X.: Adaptive Sparse Grids for Time Dependent Hamilton–Jacobi–Bellman Equations in Stochastic Control (2014). arXiv:1408.4267 Warin, X.: Adaptive Sparse Grids for Time Dependent Hamilton–Jacobi–Bellman Equations in Stochastic Control (2014). arXiv:​1408.​4267
47.
Zurück zum Zitat Zenger, C.: Sparse grids. In:Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations. Notes on Numerical Fluid Mechanics, vol. 31, Vieweg, Braunschweig, pp. 241–251 (1991) Zenger, C.: Sparse grids. In:Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations. Notes on Numerical Fluid Mechanics, vol. 31, Vieweg, Braunschweig, pp. 241–251 (1991)
Metadaten
Titel
Suboptimal Feedback Control of PDEs by Solving HJB Equations on Adaptive Sparse Grids
verfasst von
Jochen Garcke
Axel Kröner
Publikationsdatum
24.06.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0240-7

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe