Skip to main content

2019 | OriginalPaper | Buchkapitel

Subspace Arrangements, Graph Rigidity and Derandomization Through Submodular Optimization

verfasst von : Orit E. Raz, Avi Wigderson

Erschienen in: Building Bridges II

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a deterministic, strongly polynomial time algorithm for computing the matrix rank for a class of symbolic matrices (whose entries are polynomials over a field). This class was introduced, in a different language, by Lovász [16] in his study of flats in matroids, and proved a duality theorem putting this problem in \(NP \cap coNP\). As such, our result is another demonstration where “good characterization” in the sense of Edmonds leads to an efficient algorithm. In a different paper Lovász [17] proved that all such symbolic rank problems have efficient probabilistic algorithms, namely are in BPP. As such, our algorithm may be interpreted as a derandomization result, in the long sequence special cases of the PIT (Polynomial Identity Testing) problem. Finally, Lovász and Yemini [20] showed how the same problem generalizes the graph rigidity problem in two dimensions. As such, our algorithm may be seen as a generalization of the well-known deterministic algorithm for the latter problem. There are two somewhat unusual technical features in this paper. The first is the translation of Lovász’ flats problem into a symbolic rank one. The second is the use of submodular optimization for derandomization. We hope that the tools developed for both will be useful for related problems, in particular for better understanding of graph rigidity in higher dimensions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
When the input is a circuit, the degree of p is always assumed to be polynomial in the circuit’s size, and in all cases considered in this paper this will be evident.
 
2
The proof in [8] is given for non-commutative rank, but the exact same proof works verbatim for our usual notion of rank over \({\mathbb K}(\mathbf{x})\).
 
3
We identify the set of matrices and the computational problem of determining their ranks.
 
4
The arithmetic analog of the Boolean class P.
 
5
Moreover, the same family of rank-2, skew symmetric matrices is featured in a very different PIT problem: determining the maximum rank of a subspace generated by given such matrices. A deterministic polynomial time solution for this problem is given by Lovasz’ celebrated matroid parity algorithm [18] (see also [19], Theorem 11.1.2).
 
6
In Tanigawa [28] an alternative general position condition is suggested, to supposedly correct a mistake in Lovász’s paper. However we find the counter example in [28, footnote on p. 1416] false. We provide a full and detailed proof of Lovász’s formula in Sect. 5.
 
7
Our algorithm seems different than the one in [7], as it does not use duality.
 
8
Note that here one can take any of ABC to be the empty set, and we interpret \(\mathrm{span}(\emptyset )=\{0\}\).
 
Literatur
1.
Zurück zum Zitat Agrawal, M., Saha, C., Saptharishi, R., and Saxena, N.: Jacobian hits circuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-k circuits. SIAM J. Comput. 45.4, 1533–1562 (2016).MathSciNetCrossRef Agrawal, M., Saha, C., Saptharishi, R., and Saxena, N.: Jacobian hits circuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-k circuits. SIAM J. Comput. 45.4, 1533–1562 (2016).MathSciNetCrossRef
3.
4.
Zurück zum Zitat Chistov, A., Ivanyos, G., and Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In Proceedings of the 1997 ACM International Symposium on Symbolic and Algebraic Computation (ISSAC) (1997), 68–74. Chistov, A., Ivanyos, G., and Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In Proceedings of the 1997 ACM International Symposium on Symbolic and Algebraic Computation (ISSAC) (1997), 68–74.
5.
Zurück zum Zitat Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl. Bur. Stand. 71, 241–245 (1967)MathSciNetCrossRef Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl. Bur. Stand. 71, 241–245 (1967)MathSciNetCrossRef
6.
Zurück zum Zitat Fenner, S., Gurjar, R., and Thierauf, T.: Bipartite perfect matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC) (2016), 754–763. Fenner, S., Gurjar, R., and Thierauf, T.: Bipartite perfect matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC) (2016), 754–763.
7.
Zurück zum Zitat Frank, A., and Tardos, É. : Generalized polymatroids and submodular flows. Mathematicl Programming 42, 489–563 (1988)MathSciNetCrossRef Frank, A., and Tardos, É. : Generalized polymatroids and submodular flows. Mathematicl Programming 42, 489–563 (1988)MathSciNetCrossRef
11.
Zurück zum Zitat Ivanyos, G., Karpinski, M., and Saxena, N.: Deterministic polynomial time algorithms for matrix completion problems. SIAM J. Comput. 39.8, 3736–3751 (2010)MathSciNetCrossRef Ivanyos, G., Karpinski, M., and Saxena, N.: Deterministic polynomial time algorithms for matrix completion problems. SIAM J. Comput. 39.8, 3736–3751 (2010)MathSciNetCrossRef
12.
Zurück zum Zitat Jordan, T.: Combinatorial rigidity: Graphs and matroids in the theory of rigid frameworks. MSJ Memoirs 34, 33–112 (2016)MathSciNetMATH Jordan, T.: Combinatorial rigidity: Graphs and matroids in the theory of rigid frameworks. MSJ Memoirs 34, 33–112 (2016)MathSciNetMATH
13.
Zurück zum Zitat Kabanets, V., and Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13, 1–46 (2004)MathSciNetCrossRef Kabanets, V., and Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13, 1–46 (2004)MathSciNetCrossRef
14.
15.
Zurück zum Zitat Liu, H., and Regan, K.: Improved construction for universality of determinant and permanent. Inf. Process. Lett. 100.6, 233–237 (2006)MathSciNetCrossRef Liu, H., and Regan, K.: Improved construction for universality of determinant and permanent. Inf. Process. Lett. 100.6, 233–237 (2006)MathSciNetCrossRef
16.
Zurück zum Zitat Lovász, L.: Flats in matroids and geometric graphs. In Combinatorial Surveys, Proc. 6th British Combinatorial Conf., P. Cameron, Ed., Academic Press, New York, 1977, pp. 45–89. Lovász, L.: Flats in matroids and geometric graphs. In Combinatorial Surveys, Proc. 6th British Combinatorial Conf., P. Cameron, Ed., Academic Press, New York, 1977, pp. 45–89.
17.
Zurück zum Zitat Lovász, L.: On determinants, matchings, and random algorithms. In International Symposium on Fundamentals of Computation Theory, 565–574 (1979) Lovász, L.: On determinants, matchings, and random algorithms. In International Symposium on Fundamentals of Computation Theory, 565–574 (1979)
18.
19.
Zurück zum Zitat Lovász, L., and Plummer, M. D.: Matching Theory, American Mathematical Soc., Providence, Rhode Island, 2009.MATH Lovász, L., and Plummer, M. D.: Matching Theory, American Mathematical Soc., Providence, Rhode Island, 2009.MATH
20.
22.
Zurück zum Zitat Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. Z. Angew. Math. Mech. (ZAMM) 7: 1, 58–72 (1927). Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. Z. Angew. Math. Mech. (ZAMM) 7: 1, 58–72 (1927).
23.
Zurück zum Zitat Pollaczek-Geiringer, H.: âŁœZur Gliederungstheorie räumlicher Fachwerke. Z. Angew. Math. Mech. (ZAMM) 12.6, 369–376 (1932). Pollaczek-Geiringer, H.: âŁœZur Gliederungstheorie räumlicher Fachwerke. Z. Angew. Math. Mech. (ZAMM) 12.6, 369–376 (1932).
24.
Zurück zum Zitat Saxena, N.: Progress on polynomial identity testing-II. In Perspectives in Computational Complexity, Springer International Publishing, 2014, 131–146. Saxena, N.: Progress on polynomial identity testing-II. In Perspectives in Computational Complexity, Springer International Publishing, 2014, 131–146.
25.
Zurück zum Zitat Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combinat. Theory, Ser. B 80.2, 346–355 (2000) Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combinat. Theory, Ser. B 80.2, 346–355 (2000)
26.
Zurück zum Zitat Shpilka, A., and Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5, 207–388 (2010)MathSciNetCrossRef Shpilka, A., and Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5, 207–388 (2010)MathSciNetCrossRef
27.
Zurück zum Zitat Sitharam, M., St. John, A., and Sidman, J. (editors), Handbook of Geometric Constraint Systems Principles, CRC press, Taylor & Francis group (2019). Sitharam, M., St. John, A., and Sidman, J. (editors), Handbook of Geometric Constraint Systems Principles, CRC press, Taylor & Francis group (2019).
28.
Zurück zum Zitat Tanigawa, S.: Generic Rigidity Matroids with Dilworth Truncations. SIAM J. Discrete Math. 26.3, 1412–1439 (2012)MathSciNetCrossRef Tanigawa, S.: Generic Rigidity Matroids with Dilworth Truncations. SIAM J. Discrete Math. 26.3, 1412–1439 (2012)MathSciNetCrossRef
29.
Zurück zum Zitat Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. Trans. Amer. Math. Soc. 367, 8597–8641 (2015)MathSciNetCrossRef Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. Trans. Amer. Math. Soc. 367, 8597–8641 (2015)MathSciNetCrossRef
Metadaten
Titel
Subspace Arrangements, Graph Rigidity and Derandomization Through Submodular Optimization
verfasst von
Orit E. Raz
Avi Wigderson
Copyright-Jahr
2019
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-59204-5_12