Skip to main content
Erschienen in: International Journal of Computer Vision 10/2018

17.07.2018

Subspace Learning by \(\ell ^{0}\)-Induced Sparsity

Erschienen in: International Journal of Computer Vision | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Subspace clustering methods partition the data that lie in or close to a union of subspaces in accordance with the subspace structure. Such methods with sparsity prior, such as sparse subspace clustering (SSC) (Elhamifar and Vidal in IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781, 2013) with the sparsity induced by the \(\ell ^{1}\)-norm, are demonstrated to be effective in subspace clustering. Most of those methods require certain assumptions, e.g. independence or disjointness, on the subspaces. However, these assumptions are not guaranteed to hold in practice and they limit the application of existing sparse subspace clustering methods. In this paper, we propose \(\ell ^{0}\)-induced sparse subspace clustering (\(\ell ^{0}\)-SSC). In contrast to the required assumptions, such as independence or disjointness, on subspaces for most existing sparse subspace clustering methods, we prove that \(\ell ^{0}\)-SSC guarantees the subspace-sparse representation, a key element in subspace clustering, for arbitrary distinct underlying subspaces almost surely under the mild i.i.d. assumption on the data generation. We also present the “no free lunch” theorem which shows that obtaining the subspace representation under our general assumptions can not be much computationally cheaper than solving the corresponding \(\ell ^{0}\) sparse representation problem of \(\ell ^{0}\)-SSC. A novel approximate algorithm named Approximate \(\ell ^{0}\)-SSC (A\(\ell ^{0}\)-SSC) is developed which employs proximal gradient descent to obtain a sub-optimal solution to the optimization problem of \(\ell ^{0}\)-SSC with theoretical guarantee. The sub-optimal solution is used to build a sparse similarity matrix upon which spectral clustering is performed for the final clustering results. Extensive experimental results on various data sets demonstrate the superiority of A\(\ell ^{0}\)-SSC compared to other competing clustering methods. Furthermore, we extend \(\ell ^{0}\)-SSC to semi-supervised learning by performing label propagation on the sparse similarity matrix learnt by A\(\ell ^{0}\)-SSC and demonstrate the effectiveness of the resultant semi-supervised learning method termed \(\ell ^{0}\)-sparse subspace label propagation (\(\ell ^{0}\)-SSLP).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Continuous distribution here indicates that the data distribution is non-degenerate in the sense that the probability measure of any hyperplane of dimension less than that of the subspace is 0.
 
2
Even one would stick to the very original formulation without noise tolerance, (4) is still equivalent to (7) with some Lagrangian multiplier \(\lambda \).
 
Literatur
Zurück zum Zitat Bhatia, K., Jain, P., & Kar, P. (2015). Robust regression via hard thresholding. In Advances in neural information processing systems 28: Annual conference on neural information processing systems 2015 (pp 721–729). Montreal, December 7–12, 2015. Bhatia, K., Jain, P., & Kar, P. (2015). Robust regression via hard thresholding. In Advances in neural information processing systems 28: Annual conference on neural information processing systems 2015 (pp 721–729). Montreal, December 7–12, 2015.
Zurück zum Zitat Bolte, J., Sabach, S., & Teboulle, M. (2014). Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1–2), 459–494.MathSciNetCrossRefMATH Bolte, J., Sabach, S., & Teboulle, M. (2014). Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1–2), 459–494.MathSciNetCrossRefMATH
Zurück zum Zitat Cands, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(910), 589–592.MathSciNetCrossRefMATH Cands, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(910), 589–592.MathSciNetCrossRefMATH
Zurück zum Zitat Cheng, H., Liu, Z., Yang, L., & Chen, X. (2013). Sparse representation and learning in visual recognition: Theory and applications. Signal Processing, 93(6), 1408–1425.CrossRef Cheng, H., Liu, Z., Yang, L., & Chen, X. (2013). Sparse representation and learning in visual recognition: Theory and applications. Signal Processing, 93(6), 1408–1425.CrossRef
Zurück zum Zitat Cheng, B., Yang, J., Yan, S., Fu, Y., & Huang, T. S. (2010). Learning with l1-graph for image analysis. IEEE Transactions on Image Processing, 19(4), 858–866.MathSciNetCrossRefMATH Cheng, B., Yang, J., Yan, S., Fu, Y., & Huang, T. S. (2010). Learning with l1-graph for image analysis. IEEE Transactions on Image Processing, 19(4), 858–866.MathSciNetCrossRefMATH
Zurück zum Zitat Dyer, E. L., Sankaranarayanan, A. C., & Baraniuk, R. G. (2013). Greedy feature selection for subspace clustering. Journal of Machine Learning Research, 14, 2487–2517.MathSciNetMATH Dyer, E. L., Sankaranarayanan, A. C., & Baraniuk, R. G. (2013). Greedy feature selection for subspace clustering. Journal of Machine Learning Research, 14, 2487–2517.MathSciNetMATH
Zurück zum Zitat Elhamifar, E., & Vidal, R. (2011). Sparse manifold clustering and embedding. In NIPS (pp. 55–63). Elhamifar, E., & Vidal, R. (2011). Sparse manifold clustering and embedding. In NIPS (pp. 55–63).
Zurück zum Zitat Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2765–2781.CrossRef Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2765–2781.CrossRef
Zurück zum Zitat Hyder, M., & Mahata, K. (2009). An approximate 10 norm minimization algorithm for compressed sensing. In IEEE international conference on acoustics, speech and signal processing, 2009. ICASSP 2009 (pp. 3365–3368) Hyder, M., & Mahata, K. (2009). An approximate 10 norm minimization algorithm for compressed sensing. In IEEE international conference on acoustics, speech and signal processing, 2009. ICASSP 2009 (pp. 3365–3368)
Zurück zum Zitat Jenatton, R., Mairal, J., Bach, F. R., & Obozinski, G. R. (2010). Proximal methods for sparse hierarchical dictionary learning. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 487–494). Jenatton, R., Mairal, J., Bach, F. R., & Obozinski, G. R. (2010). Proximal methods for sparse hierarchical dictionary learning. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 487–494).
Zurück zum Zitat Karasuyama, M., & Mamitsuka, H. (2013). Manifold-based similarity adaptation for label propagation. In Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013 (pp. 1547–1555). Proceedings of a meeting held December 5–8, 2013, Lake Tahoe. Karasuyama, M., & Mamitsuka, H. (2013). Manifold-based similarity adaptation for label propagation. In Advances in neural information processing systems 26: 27th annual conference on neural information processing systems 2013 (pp. 1547–1555). Proceedings of a meeting held December 5–8, 2013, Lake Tahoe.
Zurück zum Zitat Li, J., Kong, Y., Fu, Y. (2017). Sparse subspace clustering by learning approximation \(\mathscr {l}\)0 codes. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2189–2195). San Francisco, February 4–9, 2017. Li, J., Kong, Y., Fu, Y. (2017). Sparse subspace clustering by learning approximation \(\mathscr {l}\)0 codes. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2189–2195). San Francisco, February 4–9, 2017.
Zurück zum Zitat Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 663–670). Haifa, June 21–24, 2010. Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 663–670). Haifa, June 21–24, 2010.
Zurück zum Zitat Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184.CrossRef Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184.CrossRef
Zurück zum Zitat Mairal, J., Bach, F. R., Ponce, J., Sapiro, G., Zisserman, A. (2008). Supervised dictionary learning. In Advances in neural information processing systems 21, Proceedings of the 22nd annual conference on neural information processing systems (pp. 1033–1040). Vancouver, December 8–11, 2008. Mairal, J., Bach, F. R., Ponce, J., Sapiro, G., Zisserman, A. (2008). Supervised dictionary learning. In Advances in neural information processing systems 21, Proceedings of the 22nd annual conference on neural information processing systems (pp. 1033–1040). Vancouver, December 8–11, 2008.
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60.MathSciNetMATH Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60.MathSciNetMATH
Zurück zum Zitat Mancera, L., & Portilla, J. (2006). L0-norm-based sparse representation through alternate projections. In 2006 IEEE international conference on image processing (pp. 2089–2092). Mancera, L., & Portilla, J. (2006). L0-norm-based sparse representation through alternate projections. In 2006 IEEE international conference on image processing (pp. 2089–2092).
Zurück zum Zitat Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In NIPS (pp. 849–856). Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In NIPS (pp. 849–856).
Zurück zum Zitat Park, D., Caramanis, C., & Sanghavi, S. (2014). Greedy subspace clustering. In Advances in neural information processing systems 27: Annual conference on neural information processing systems 2014 (pp. 2753–2761). Montreal, December 8–13, 2014. Park, D., Caramanis, C., & Sanghavi, S. (2014). Greedy subspace clustering. In Advances in neural information processing systems 27: Annual conference on neural information processing systems 2014 (pp. 2753–2761). Montreal, December 8–13, 2014.
Zurück zum Zitat Peng, X., Yi, Z., & Tang, H. (2015) Robust subspace clustering via thresholding ridge regression. In AAAI conference on artificial intelligence (AAAI) (pp. 3827–3833). AAAI Peng, X., Yi, Z., & Tang, H. (2015) Robust subspace clustering via thresholding ridge regression. In AAAI conference on artificial intelligence (AAAI) (pp. 3827–3833). AAAI
Zurück zum Zitat Plummer, D., & Lovász, L. (1986). Matching theory. Amsterdam: North-Holland Mathematics Studies, Elsevier.MATH Plummer, D., & Lovász, L. (1986). Matching theory. Amsterdam: North-Holland Mathematics Studies, Elsevier.MATH
Zurück zum Zitat Soltanolkotabi, M., & Cands, E. J. (2012). A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 40(4), 2195–2238.MathSciNetCrossRefMATH Soltanolkotabi, M., & Cands, E. J. (2012). A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 40(4), 2195–2238.MathSciNetCrossRefMATH
Zurück zum Zitat Soltanolkotabi, M., Elhamifar, E., & Cands, E. J. (2014). Robust subspace clustering. The Annals of Statistics, 42(2), 669–699.MathSciNetCrossRefMATH Soltanolkotabi, M., Elhamifar, E., & Cands, E. J. (2014). Robust subspace clustering. The Annals of Statistics, 42(2), 669–699.MathSciNetCrossRefMATH
Zurück zum Zitat Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.MathSciNetCrossRefMATH Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.MathSciNetCrossRefMATH
Zurück zum Zitat Vidal, R. (2011). Subspace clustering. IEEE Signal Processing Magazine, 28(2), 52–68.CrossRef Vidal, R. (2011). Subspace clustering. IEEE Signal Processing Magazine, 28(2), 52–68.CrossRef
Zurück zum Zitat Wang, Y., & Xu, H. (2013). Noisy sparse subspace clustering. In Proceedings of the 30th international conference on machine learning, ICML 2013 (pp. 89–97). Atlanta, 16–21 June 2013. Wang, Y., & Xu, H. (2013). Noisy sparse subspace clustering. In Proceedings of the 30th international conference on machine learning, ICML 2013 (pp. 89–97). Atlanta, 16–21 June 2013.
Zurück zum Zitat Wang, Z., Gu, Q., Ning, Y., & Liu, H. (2015). High dimensional EM algorithm: Statistical optimization and asymptotic normality. In Advances in neural information processing systems 28: Annual conference on neural information processing systems 2015 (pp. 2521–2529). Montreal, December 7–12, 2015. Wang, Z., Gu, Q., Ning, Y., & Liu, H. (2015). High dimensional EM algorithm: Statistical optimization and asymptotic normality. In Advances in neural information processing systems 28: Annual conference on neural information processing systems 2015 (pp. 2521–2529). Montreal, December 7–12, 2015.
Zurück zum Zitat Wang, Y., Wang, Y. X., & Singh, A. (2016). Graph connectivity in noisy sparse subspace clustering. In CoRR abs/1504.01046. Wang, Y., Wang, Y. X., & Singh, A. (2016). Graph connectivity in noisy sparse subspace clustering. In CoRR abs/1504.01046.
Zurück zum Zitat Wang, Y. X., Xu, H., & Leng, C. (2013). Provable subspace clustering: When LRR meets SSC. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Weinberger (Eds.), Advances in Neural Information Processing Systems 26 (pp. 64–72). New York: Curran Associates, Inc. Wang, Y. X., Xu, H., & Leng, C. (2013). Provable subspace clustering: When LRR meets SSC. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Weinberger (Eds.), Advances in Neural Information Processing Systems 26 (pp. 64–72). New York: Curran Associates, Inc.
Zurück zum Zitat Yan, S., & Wang, H. (2009). Semi-supervised learning by sparse representation. In SDM (pp. 792–801). Yan, S., & Wang, H. (2009). Semi-supervised learning by sparse representation. In SDM (pp. 792–801).
Zurück zum Zitat Yang, Y., Feng, J., Jojic, N., Yang, J., & Huang, T. S. (2016). \(\mathscr {l}\) 0 \(\mathscr {l}\) 0 -sparse subspace clustering. In Computer vision—ECCV 2016—14th European conference. Amsterdam, October 11–14, 2016, Proceedings, Part II (pp. 731–747). https://doi.org/10.1007/978-3-319-46475-6_45. Yang, Y., Feng, J., Jojic, N., Yang, J., & Huang, T. S. (2016). \(\mathscr {l}\) 0 \(\mathscr {l}\) 0 -sparse subspace clustering. In Computer vision—ECCV 2016—14th European conference. Amsterdam, October 11–14, 2016, Proceedings, Part II (pp. 731–747). https://​doi.​org/​10.​1007/​978-3-319-46475-6_​45.
Zurück zum Zitat Yang, Y., Wang, Z., Yang, J., Han, J., & Huang, T. (2014a). Regularized l1-graph for data clustering. In Proceedings of the British machine vision conference. BMVA Press. Yang, Y., Wang, Z., Yang, J., Han, J., & Huang, T. (2014a). Regularized l1-graph for data clustering. In Proceedings of the British machine vision conference. BMVA Press.
Zurück zum Zitat Yang, Y., Wang, Z., Yang, J., Wang, J., Chang, S., & Huang, T. S. (2014b). Data clustering by laplacian regularized l1-graph. In Proceedings of the 28th AAAI conference on artificial intelligence (pp. 3148–3149). Québec City, July 27–31, 2014. Yang, Y., Wang, Z., Yang, J., Wang, J., Chang, S., & Huang, T. S. (2014b). Data clustering by laplacian regularized l1-graph. In Proceedings of the 28th AAAI conference on artificial intelligence (pp. 3148–3149). Québec City, July 27–31, 2014.
Zurück zum Zitat Yang, J., Yu, K., Gong, Y., & Huang, T. S. (2009) Linear spatial pyramid matching using sparse coding for image classification. In CVPR (pp. 1794–1801). Yang, J., Yu, K., Gong, Y., & Huang, T. S. (2009) Linear spatial pyramid matching using sparse coding for image classification. In CVPR (pp. 1794–1801).
Zurück zum Zitat You, C., Robinson, D., & Vidal, R. (2016). Scalable sparse subspace clustering by orthogonal matching pursuit. In IEEE Conference on computer vision and pattern recognition (CVPR) (pp. 3918–3927). Las Vegas, NV, June 27–30, 2016. https://doi.org/10.1109/CVPR.2016.425. You, C., Robinson, D., & Vidal, R. (2016). Scalable sparse subspace clustering by orthogonal matching pursuit. In IEEE Conference on computer vision and pattern recognition (CVPR) (pp. 3918–3927). Las Vegas, NV, June 27–30, 2016. https://​doi.​org/​10.​1109/​CVPR.​2016.​425.
Zurück zum Zitat Zhang, T., Ghanem, B., Liu, S., Xu, C., & Ahuja, N. (2013). Low-rank sparse coding for image classification. In IEEE international conference on computer vision, ICCV 2013 (pp. 281–288). Sydney, December 1–8, 2013. Zhang, T., Ghanem, B., Liu, S., Xu, C., & Ahuja, N. (2013). Low-rank sparse coding for image classification. In IEEE international conference on computer vision, ICCV 2013 (pp. 281–288). Sydney, December 1–8, 2013.
Zurück zum Zitat Zhang, C. H., & Zhang, T. (2012). A general theory of concave regularization for high-dimensional sparse estimation problems. Statistical Science, 27(4), 576–593.MathSciNetCrossRefMATH Zhang, C. H., & Zhang, T. (2012). A general theory of concave regularization for high-dimensional sparse estimation problems. Statistical Science, 27(4), 576–593.MathSciNetCrossRefMATH
Zurück zum Zitat Zheng, X., Cai, D., He, X., Ma, W. Y., & Lin, X. (2004). Locality preserving clustering for image database. In Proceedings of the 12th annual ACM international conference on multimedia, MULTIMEDIA’04 (pp. 885–891). New York: ACM Zheng, X., Cai, D., He, X., Ma, W. Y., & Lin, X. (2004). Locality preserving clustering for image database. In Proceedings of the 12th annual ACM international conference on multimedia, MULTIMEDIA’04 (pp. 885–891). New York: ACM
Zurück zum Zitat Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., et al. (2011). Graph regularized sparse coding for image representation. IEEE Transactions on Image Processing, 20(5), 1327–1336.MathSciNetCrossRefMATH Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., et al. (2011). Graph regularized sparse coding for image representation. IEEE Transactions on Image Processing, 20(5), 1327–1336.MathSciNetCrossRefMATH
Zurück zum Zitat Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003). Learning with local and global consistency. In advances in neural information processing systems 16. Neural Information Processing Systems, NIPS 2003. Vancouver, December 8–13, 2003. Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003). Learning with local and global consistency. In advances in neural information processing systems 16. Neural Information Processing Systems, NIPS 2003. Vancouver, December 8–13, 2003.
Zurück zum Zitat Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 28th international conference machine learning (ICML 2003) (pp. 912–919). Washington, August 21–24, 2003. Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 28th international conference machine learning (ICML 2003) (pp. 912–919). Washington, August 21–24, 2003.
Metadaten
Titel
Subspace Learning by -Induced Sparsity
Publikationsdatum
17.07.2018
Erschienen in
International Journal of Computer Vision / Ausgabe 10/2018
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-018-1092-4

Weitere Artikel der Ausgabe 10/2018

International Journal of Computer Vision 10/2018 Zur Ausgabe