Skip to main content

2022 | OriginalPaper | Buchkapitel

5. Substrate and Encapsulation Materials for Printed Flexible Electronics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Substrate, dielectric, and encapsulation materials are critically important as their properties can dominate those of the integrated flexible electronic system. A flexible substrate should be highly deformable and mechanically robust and must exhibit high tolerance levels of bending repeatability. They are also required to possess properties such as dimensional stability, thermal stability, low coefficient of thermal expansion (CTE), excellent solvent resistance, and good barrier properties for moisture and gases. The substrate materials mainly include plastic films, metal foils, and fibrous materials (including paper and textiles). Moreover, a uniform layer of dielectric is needed to promote the activation of the medium caused by electric fields or other transduction phenomena. Inorganic materials such as silica, alumina, and other high permittivity oxides often used in electronics on flexible substrates are usually not printable. Low-cost organic dielectric materials that are available in large quantities and can be dissolved in various solvents and solutions can be printed easily as compared to inorganic counterparts. Some of the commonly used organic dielectric materials in printed electronics are poly (4-vinylphenol) (PVP), poly(methyl methacrylate), Polyethylene Terephthalate, Polyimide, Polyvinyl alcohol, and Polystyrene. Besides dielectric layers in electronic devices, solution processed organic dielectric materials are also used for final encapsulation of printed devices. There is a wide range of permeation requirements for different encapsulation materials. To ensure protection of flexible devices, conventional encapsulation methods are not suitable due to their inherent rigidity, and organic/inorganic hybrid thin-film encapsulation (TFE) has been considered as the most promising technology. This chapter will provide a brief review on substrate, dielectric, and encapsulation materials for flexible electronics applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adhikari JM, Gadinski MR, Li Q, Sun KG, Reyes-Martinez MA, Iagodkine E, Briseno AL, Jackson TN, Wang Q, Gomez ED (2016) Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal field-effect transistors. Adv Mater 28:10095–10102CrossRef Adhikari JM, Gadinski MR, Li Q, Sun KG, Reyes-Martinez MA, Iagodkine E, Briseno AL, Jackson TN, Wang Q, Gomez ED (2016) Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal field-effect transistors. Adv Mater 28:10095–10102CrossRef
Zurück zum Zitat Beaulieu MR, Baral JK, Hendricks NR, Tang Y, Briseno AL, Watkins JJ (2013) Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. ACS Appl Mater Interfaces 5:13096–13103CrossRef Beaulieu MR, Baral JK, Hendricks NR, Tang Y, Briseno AL, Watkins JJ (2013) Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. ACS Appl Mater Interfaces 5:13096–13103CrossRef
Zurück zum Zitat Benvenho ARV, Machado WS, Cruz-Cruz I, Hummelgen IA (2013) Study of poly(3-hexylthiophene)/cross-linked poly(vinyl alcohol) as semiconductor/insulator for application in low voltage organic field effect transistors. J Appl Phys 113:214509CrossRef Benvenho ARV, Machado WS, Cruz-Cruz I, Hummelgen IA (2013) Study of poly(3-hexylthiophene)/cross-linked poly(vinyl alcohol) as semiconductor/insulator for application in low voltage organic field effect transistors. J Appl Phys 113:214509CrossRef
Zurück zum Zitat Bettinger CJ, Bao ZN (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655CrossRef Bettinger CJ, Bao ZN (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655CrossRef
Zurück zum Zitat Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thompson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65:2922–2924CrossRef Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thompson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65:2922–2924CrossRef
Zurück zum Zitat Cho JH, Lee J, Xia Y, Kim B, He Y, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906CrossRef Cho JH, Lee J, Xia Y, Kim B, He Y, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906CrossRef
Zurück zum Zitat Choi JH, Gu YY, Hong KY, Xie W, Frisbie CD, Lodge TP (2014) High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. ACS Appl Mater Interfaces 6:19275–19281CrossRef Choi JH, Gu YY, Hong KY, Xie W, Frisbie CD, Lodge TP (2014) High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. ACS Appl Mater Interfaces 6:19275–19281CrossRef
Zurück zum Zitat de Pauli M, Zschieschang U, Barcelos ID, Klauk H, Malachias A (2016) Tailoring the dielectric layer structure for enhanced carrier mobility in organic transistors: the use of hybrid inorganic/organic multilayer dielectrics. Adv Electron Mater 2:1500402CrossRef de Pauli M, Zschieschang U, Barcelos ID, Klauk H, Malachias A (2016) Tailoring the dielectric layer structure for enhanced carrier mobility in organic transistors: the use of hybrid inorganic/organic multilayer dielectrics. Adv Electron Mater 2:1500402CrossRef
Zurück zum Zitat Du HW, Lin X, Xu ZM, Chu DW (2015) Electric double-layer transistors: a review of recent progress. J Mater Sci 50:5641–5673CrossRef Du HW, Lin X, Xu ZM, Chu DW (2015) Electric double-layer transistors: a review of recent progress. J Mater Sci 50:5641–5673CrossRef
Zurück zum Zitat Duerinckx F, Szlufcik J (2002) Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Sol Energy Mater Sol Cells 72:231–246CrossRef Duerinckx F, Szlufcik J (2002) Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Sol Energy Mater Sol Cells 72:231–246CrossRef
Zurück zum Zitat Faraji S, Danesh E, Tate DJ, Turner ML, Majewski LA (2016) Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs). J Phys D Appl Phys 49:185102CrossRef Faraji S, Danesh E, Tate DJ, Turner ML, Majewski LA (2016) Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs). J Phys D Appl Phys 49:185102CrossRef
Zurück zum Zitat Haas K, Amberg-Schwab S, Rose K, Schottner G (1999) Functionalized coatings based on inorganic-organic polymers (ORMOCER (R) s) and their combination with vapor deposited inorganic thin films. Surf Coat Technol 111:72–79CrossRef Haas K, Amberg-Schwab S, Rose K, Schottner G (1999) Functionalized coatings based on inorganic-organic polymers (ORMOCER (R) s) and their combination with vapor deposited inorganic thin films. Surf Coat Technol 111:72–79CrossRef
Zurück zum Zitat Harris KD, Elias AL, Chung H-J (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805CrossRef Harris KD, Elias AL, Chung H-J (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805CrossRef
Zurück zum Zitat Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17(5):236–246CrossRef Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17(5):236–246CrossRef
Zurück zum Zitat Jung H, Jeon H, Choi H, Ham G, Shin S, Jeon H (2014) Al2O3 multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition. J Appl Phys 115(7):073502CrossRef Jung H, Jeon H, Choi H, Ham G, Shin S, Jeon H (2014) Al2O3 multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition. J Appl Phys 115(7):073502CrossRef
Zurück zum Zitat Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185CrossRef Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185CrossRef
Zurück zum Zitat Kim SH, Yun WM, Kwon O-K, Hong K, Yang C, Choi W-S, Park CE (2010) Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics. J Phys D Appl Phys 43:465102CrossRef Kim SH, Yun WM, Kwon O-K, Hong K, Yang C, Choi W-S, Park CE (2010) Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics. J Phys D Appl Phys 43:465102CrossRef
Zurück zum Zitat Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie CD (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846CrossRef Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie CD (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846CrossRef
Zurück zum Zitat Ko JM, Kang YH, Lee C, Cho SY (2013) Electrically and thermally stable gate dielectrics from thiol-ene cross-linked systems for use in organic thin-film transistors. J Mater Chem C 1:3091–3097CrossRef Ko JM, Kang YH, Lee C, Cho SY (2013) Electrically and thermally stable gate dielectrics from thiol-ene cross-linked systems for use in organic thin-film transistors. J Mater Chem C 1:3091–3097CrossRef
Zurück zum Zitat Kong D, Pfattner R, Chortos A, Lu CE, Hinckley AC, Wang C, Lee WY, Chung JW, Bao ZA (2016) Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv Funct Mater 26:4680–4686CrossRef Kong D, Pfattner R, Chortos A, Lu CE, Hinckley AC, Wang C, Lee WY, Chung JW, Bao ZA (2016) Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv Funct Mater 26:4680–4686CrossRef
Zurück zum Zitat Lee BH, Anderson VR, George SM (2011) Metalcone and metalcone/metal oxide alloys grown using atomic & molecular layer deposition. ECS Trans 41(2):131–138CrossRef Lee BH, Anderson VR, George SM (2011) Metalcone and metalcone/metal oxide alloys grown using atomic & molecular layer deposition. ECS Trans 41(2):131–138CrossRef
Zurück zum Zitat Lee S, Choi H, Shin S, Park J, Ham G, Jung H, Jeon H (2014) Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition. Curr Appl Phys 14(4):552–557CrossRef Lee S, Choi H, Shin S, Park J, Ham G, Jung H, Jeon H (2014) Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition. Curr Appl Phys 14(4):552–557CrossRef
Zurück zum Zitat Lewis J (2006) Materials challenge for flexible organic devices. Mater Today 9(4):38–45 Lewis J (2006) Materials challenge for flexible organic devices. Mater Today 9(4):38–45
Zurück zum Zitat Li HY, Liu YF, Duan Y, Yang YQ, Lu Y-N (2015) Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices. Materials 8(2):600–610CrossRef Li HY, Liu YF, Duan Y, Yang YQ, Lu Y-N (2015) Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices. Materials 8(2):600–610CrossRef
Zurück zum Zitat Logothetidis S, Laskarakis A (2009) Towards the optimization of materials and processes for flexible organic electronics devices. Eur Phys J Appl Phys 46:12502CrossRef Logothetidis S, Laskarakis A (2009) Towards the optimization of materials and processes for flexible organic electronics devices. Eur Phys J Appl Phys 46:12502CrossRef
Zurück zum Zitat Logothetidis S, Laskarakis A, Georgiou D, Amberg-Schwab S, Weber U, Noller K, Schmidt M, Kucukpinar-Niarchos E, Lohwasser W (2010) Ultra high barrier materials for encapsulation of flexible organic electronics. Eur Phys J Appl Phys 51:33203CrossRef Logothetidis S, Laskarakis A, Georgiou D, Amberg-Schwab S, Weber U, Noller K, Schmidt M, Kucukpinar-Niarchos E, Lohwasser W (2010) Ultra high barrier materials for encapsulation of flexible organic electronics. Eur Phys J Appl Phys 51:33203CrossRef
Zurück zum Zitat Mandal T, Garg A, Deepak (2013) Thin film transistors fabricated by evaporating pentacene under electric field. J Appl Phys 114:154517CrossRef Mandal T, Garg A, Deepak (2013) Thin film transistors fabricated by evaporating pentacene under electric field. J Appl Phys 114:154517CrossRef
Zurück zum Zitat McMorrow JJ, Walker AR, Sangwan VK, Jariwala D, Hoffman E, Everaerts K, Facchetti A, Hersam MC, Marks TJ (2015) Solution-processed self-assembled nanodielectrics on template-stripped metal substrates. ACS Appl Mater Interfaces 7:26360–26366CrossRef McMorrow JJ, Walker AR, Sangwan VK, Jariwala D, Hoffman E, Everaerts K, Facchetti A, Hersam MC, Marks TJ (2015) Solution-processed self-assembled nanodielectrics on template-stripped metal substrates. ACS Appl Mater Interfaces 7:26360–26366CrossRef
Zurück zum Zitat Monne MA, Lan X, Chen MY (2018) Material selection and fabrication processes for flexible conformal antennas. Int J Antenn Propag 2018:9815631 Monne MA, Lan X, Chen MY (2018) Material selection and fabrication processes for flexible conformal antennas. Int J Antenn Propag 2018:9815631
Zurück zum Zitat Moon H, Seong H, Shin WC, Park WT, Kim M, Lee S, Bong JH, Noh YY, Cho BJ, Yoo S (2015) Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat Mater 14:628–635CrossRef Moon H, Seong H, Shin WC, Park WT, Kim M, Lee S, Bong JH, Noh YY, Cho BJ, Yoo S (2015) Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat Mater 14:628–635CrossRef
Zurück zum Zitat Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056CrossRef Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056CrossRef
Zurück zum Zitat Park S, Chang H-Y, Rahimi S, Lee AL, Tao L, Akinwande D (2018) Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv Electron Mater 4:1700043CrossRef Park S, Chang H-Y, Rahimi S, Lee AL, Tao L, Akinwande D (2018) Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv Electron Mater 4:1700043CrossRef
Zurück zum Zitat Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vacuum Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 18:1785CrossRef Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vacuum Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 18:1785CrossRef
Zurück zum Zitat Salvado R, Loss C, Goncalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857CrossRef Salvado R, Loss C, Goncalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857CrossRef
Zurück zum Zitat Sannigrahi J, Bhadra D, Chaudhuri BK (2013) Crystalline graphite oxide/Pvdf nanocomposite gate dielectric: low-voltage and high field effect mobility thin-film transistor. Phys Status Solidi A 210:546–552CrossRef Sannigrahi J, Bhadra D, Chaudhuri BK (2013) Crystalline graphite oxide/Pvdf nanocomposite gate dielectric: low-voltage and high field effect mobility thin-film transistor. Phys Status Solidi A 210:546–552CrossRef
Zurück zum Zitat Schlom D, Haeni J (2002) A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull 27(3):198–204CrossRef Schlom D, Haeni J (2002) A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull 27(3):198–204CrossRef
Zurück zum Zitat Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413CrossRef Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413CrossRef
Zurück zum Zitat Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544CrossRef Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544CrossRef
Zurück zum Zitat Urasinska-Wojcik B, Cocherel N, Wilson R, Burroughes J, Opoku J, Turner ML, Majewski LA (2015) 1 V Organic transistors with mixed self-assembled monolayer/Al2O3 gate dielectrics. Org Electron 26:20–24CrossRef Urasinska-Wojcik B, Cocherel N, Wilson R, Burroughes J, Opoku J, Turner ML, Majewski LA (2015) 1 V Organic transistors with mixed self-assembled monolayer/Al2O3 gate dielectrics. Org Electron 26:20–24CrossRef
Zurück zum Zitat Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A (2018) High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev 118:5690–5754CrossRef Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A (2018) High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev 118:5690–5754CrossRef
Zurück zum Zitat Xu W, Guo C, Rhee S-W (2013) High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures. J Mater Chem C 1:3955–3960CrossRef Xu W, Guo C, Rhee S-W (2013) High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures. J Mater Chem C 1:3955–3960CrossRef
Zurück zum Zitat Yang Z (2016) Flexible substrate technology for millimeter wave applications. Ph.D. dissertation, Electronics, INSA deToulouse, France Yang Z (2016) Flexible substrate technology for millimeter wave applications. Ph.D. dissertation, Electronics, INSA deToulouse, France
Zurück zum Zitat Yang D, Yang YQ, Duan Y, Chen P, Zang CL, Xie Y, Liu DM, Wang X, Duan YH, Sun FB, Gao Q, Xue KW (2013) Passivation properties of UV-curable polymer for organic light emitting diodes. ECS Solid State Lett 2(9):R31–R33CrossRef Yang D, Yang YQ, Duan Y, Chen P, Zang CL, Xie Y, Liu DM, Wang X, Duan YH, Sun FB, Gao Q, Xue KW (2013) Passivation properties of UV-curable polymer for organic light emitting diodes. ECS Solid State Lett 2(9):R31–R33CrossRef
Zurück zum Zitat Yogeswaran N et al (2015) New materials and advances in making electronic skin for interactive robots. Adv Robot 29(21):1359–1373CrossRef Yogeswaran N et al (2015) New materials and advances in making electronic skin for interactive robots. Adv Robot 29(21):1359–1373CrossRef
Zurück zum Zitat Yu D, Yang Y-Q, Chen Z, Tao Y, Liu Y-F (2016) Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt Commun 362:43–49CrossRef Yu D, Yang Y-Q, Chen Z, Tao Y, Liu Y-F (2016) Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt Commun 362:43–49CrossRef
Metadaten
Titel
Substrate and Encapsulation Materials for Printed Flexible Electronics
verfasst von
Colin Tong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_5