Skip to main content
Erschienen in: Journal of Materials Science 7/2017

14.09.2016 | Batteries and Supercapacitors

Sulfur-doped ZnFe2O4 nanoparticles with enhanced lithium storage capabilities

verfasst von: Longying Nie, Huijun Wang, Jingjing Ma, Sheng Liu, Ruo Yuan

Erschienen in: Journal of Materials Science | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sulfur-doped ZnFe2O4 nanoparticles were synthesized through sulfurizing ZnFe2O4 nanoparticles in the hydrothermal process using Na2S as the sulfur source. The content of sulfur dopant was tuned from 0.70 to 1.26 wt% by controlling concentrations of Na2S solutions. When evaluated as anode materials for lithium-ion batteries, sulfur-doped ZnFe2O4 nanoparticles exhibited much higher reversible capacities, better rate performances, and more excellent cycling stabilities than the pristine ZnFe2O4 nanoparticles. After 60 cycles at a current density of 100 mA g−1, the electrode of sulfur-doped ZnFe2O4 nanoparticles (1.26 wt%) delivered a reversible specific capacity of 604 mA h g−1, while the pristine ZnFe2O4 electrode only remained 200 mA h g−1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hou X, Wang X, Yao L, Hu S, Wu Y, Liu X (2015) Facile synthesis of ZnFe2O4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance. New J Chem 39:1943–1952CrossRef Hou X, Wang X, Yao L, Hu S, Wu Y, Liu X (2015) Facile synthesis of ZnFe2O4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance. New J Chem 39:1943–1952CrossRef
3.
Zurück zum Zitat Kong J, Yao X, Wei Y, Zhao C, Ang JM, Lu X (2015) Polydopamine-derived porous nanofibers as host of ZnFe2O4 nanoneedles: towards high-performance anodes for lithium-ion batteries. RSC Adv 5:13315–13323CrossRef Kong J, Yao X, Wei Y, Zhao C, Ang JM, Lu X (2015) Polydopamine-derived porous nanofibers as host of ZnFe2O4 nanoneedles: towards high-performance anodes for lithium-ion batteries. RSC Adv 5:13315–13323CrossRef
4.
5.
Zurück zum Zitat Xiao Y, Zai J, Tao L et al (2013) MnFe2O4-graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys Chemy Chem Phys 15:3939–3945CrossRef Xiao Y, Zai J, Tao L et al (2013) MnFe2O4-graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys Chemy Chem Phys 15:3939–3945CrossRef
6.
Zurück zum Zitat Lazarević ZŽ, Jovalekić Č, Milutinović A et al (2013) Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J Appl Phys 113:187221. doi:10.1063/1.4801962 CrossRef Lazarević ZŽ, Jovalekić Č, Milutinović A et al (2013) Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J Appl Phys 113:187221. doi:10.​1063/​1.​4801962 CrossRef
7.
Zurück zum Zitat Cherian CT, Sundaramurthy J, Reddy MV et al (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5:9957–9963CrossRef Cherian CT, Sundaramurthy J, Reddy MV et al (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5:9957–9963CrossRef
8.
Zurück zum Zitat Zhang Z, Li W, Zou R et al (2015) Layer-stacked cobalt ferrite (CoFe2O4) mesoporous platelets for high-performance lithium ion battery anodes. J Mater Chem A 3:6990–6997CrossRef Zhang Z, Li W, Zou R et al (2015) Layer-stacked cobalt ferrite (CoFe2O4) mesoporous platelets for high-performance lithium ion battery anodes. J Mater Chem A 3:6990–6997CrossRef
9.
Zurück zum Zitat Wang J, Zhang H, Lv X et al (2016) Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance. J Mater Sci 51:6590–6599. doi:10.1007/s10853-016-9902-y CrossRef Wang J, Zhang H, Lv X et al (2016) Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance. J Mater Sci 51:6590–6599. doi:10.​1007/​s10853-016-9902-y CrossRef
10.
Zurück zum Zitat Du D, Yue W, Ren Y, Yang X (2014) Fabrication of graphene-encapsulated CoO/CoFe2O4 composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries. J Mater Sci 49:8031–8039. doi:10.1007/s10853-014-8510-y CrossRef Du D, Yue W, Ren Y, Yang X (2014) Fabrication of graphene-encapsulated CoO/CoFe2O4 composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries. J Mater Sci 49:8031–8039. doi:10.​1007/​s10853-014-8510-y CrossRef
11.
Zurück zum Zitat Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRef Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRef
12.
Zurück zum Zitat Xia H, Qian Y, Fu Y, Wang X (2013) Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci 17:67–71CrossRef Xia H, Qian Y, Fu Y, Wang X (2013) Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci 17:67–71CrossRef
13.
Zurück zum Zitat Yao L, Hou X, Hu S et al (2014) Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Sources 258:305–313CrossRef Yao L, Hou X, Hu S et al (2014) Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Sources 258:305–313CrossRef
14.
Zurück zum Zitat Sui J, Zhang C, Hong D et al (2012) Facile synthesis of MWCNT-ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. J Mater Chem 22:13674–13681CrossRef Sui J, Zhang C, Hong D et al (2012) Facile synthesis of MWCNT-ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. J Mater Chem 22:13674–13681CrossRef
15.
Zurück zum Zitat Deng Y, Zhang Q, Tang S et al (2011) One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem Commun 47:6828–6830CrossRef Deng Y, Zhang Q, Tang S et al (2011) One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem Commun 47:6828–6830CrossRef
16.
Zurück zum Zitat Song W, Xie J, Liu S, Cao G, Zhu T, Zhao X (2012) Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New J Chem 36:2236–2241CrossRef Song W, Xie J, Liu S, Cao G, Zhu T, Zhao X (2012) Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New J Chem 36:2236–2241CrossRef
20.
21.
Zurück zum Zitat Lin L, Pan Q (2015) ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J Mater Chem A 3:1724–1729CrossRef Lin L, Pan Q (2015) ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J Mater Chem A 3:1724–1729CrossRef
22.
Zurück zum Zitat Shi J, Zhou X, Liu Y, Su Q, Zhang J, Du G (2015) One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Mater Res Bull 65:204–209CrossRef Shi J, Zhou X, Liu Y, Su Q, Zhang J, Du G (2015) One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Mater Res Bull 65:204–209CrossRef
23.
Zurück zum Zitat Wang B, Li S, Li B, Liu J, Yu M (2015) Facile and large-scale fabrication of hierarchical ZnFe2O4/graphene hybrid films as advanced binder-free anodes for lithium-ion batteries. New J Chem 39:1725–1733CrossRef Wang B, Li S, Li B, Liu J, Yu M (2015) Facile and large-scale fabrication of hierarchical ZnFe2O4/graphene hybrid films as advanced binder-free anodes for lithium-ion batteries. New J Chem 39:1725–1733CrossRef
24.
Zurück zum Zitat Dong Y, Xia Y, Chui Y-S, Cao C, Zapien JA (2015) Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J Power Sources 275:769–776CrossRef Dong Y, Xia Y, Chui Y-S, Cao C, Zapien JA (2015) Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J Power Sources 275:769–776CrossRef
25.
Zurück zum Zitat Yao L, Hou X, Hu S, Tang X, Liu X, Ru Q (2014) An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J Alloy Compd 585:398–403CrossRef Yao L, Hou X, Hu S, Tang X, Liu X, Ru Q (2014) An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J Alloy Compd 585:398–403CrossRef
26.
27.
Zurück zum Zitat Wu J, Song Y, Zhou R et al (2015) Zn–Fe–ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium-ion batteries. J Mater Chem A 3:7793–7798CrossRef Wu J, Song Y, Zhou R et al (2015) Zn–Fe–ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium-ion batteries. J Mater Chem A 3:7793–7798CrossRef
28.
Zurück zum Zitat Jin R, Liu H, Guan Y, Zhou J, Chen G (2015) ZnFe2O4/C nanodiscs as high performance anode material for lithium-ion batteries. Mater Lett 158:218–221CrossRef Jin R, Liu H, Guan Y, Zhou J, Chen G (2015) ZnFe2O4/C nanodiscs as high performance anode material for lithium-ion batteries. Mater Lett 158:218–221CrossRef
29.
Zurück zum Zitat Mao J, Hou X, Wang X, He G, Shao Z, Hu S (2015) Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv 5:31807–31814CrossRef Mao J, Hou X, Wang X, He G, Shao Z, Hu S (2015) Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv 5:31807–31814CrossRef
30.
Zurück zum Zitat Bresser D, Paillard E, Kloepsch R et al (2013) Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv Energy Mater 3:513–523CrossRef Bresser D, Paillard E, Kloepsch R et al (2013) Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv Energy Mater 3:513–523CrossRef
31.
Zurück zum Zitat Kumar N, Yu Y-C, Lu YH, Tseng TY (2016) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51:2320–2329. doi:10.1007/s10853-015-9540-9 CrossRef Kumar N, Yu Y-C, Lu YH, Tseng TY (2016) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51:2320–2329. doi:10.​1007/​s10853-015-9540-9 CrossRef
33.
Zurück zum Zitat NuLi Y-N, Chu Y-Q, Qin Q-Z (2004) Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. J Electrochem Soc 151:A1077–A1083CrossRef NuLi Y-N, Chu Y-Q, Qin Q-Z (2004) Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. J Electrochem Soc 151:A1077–A1083CrossRef
34.
Zurück zum Zitat Teh PF, Pramana SS, Sharma Y, Ko YW, Madhavi S (2013) Electrospun Zn1–xMnxFe2O4 nanofibers As Anodes for lithium-ion batteries and the impact of mixed transition metallic oxides on battery performance. ACS Appl Mater Inter 5:5461–5467CrossRef Teh PF, Pramana SS, Sharma Y, Ko YW, Madhavi S (2013) Electrospun Zn1–xMnxFe2O4 nanofibers As Anodes for lithium-ion batteries and the impact of mixed transition metallic oxides on battery performance. ACS Appl Mater Inter 5:5461–5467CrossRef
35.
Zurück zum Zitat Hameed AS, Bahiraei H, Reddy MV et al (2014) Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles. ACS Appl Mater Inter 6:10744–10753CrossRef Hameed AS, Bahiraei H, Reddy MV et al (2014) Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles. ACS Appl Mater Inter 6:10744–10753CrossRef
36.
Zurück zum Zitat Tang X, Hou X, Yao L, Hu S, Liu X, Xiang L (2014) Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Mater Res Bull 57:127–134CrossRef Tang X, Hou X, Yao L, Hu S, Liu X, Xiang L (2014) Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Mater Res Bull 57:127–134CrossRef
37.
38.
Zurück zum Zitat Yildizhan MM, Sturm S, Gulgun MA (2016) Structural and electronic modifications on TiO2 anatase by Li, K or Nb doping below and above the solubility limit. J Mater Sci 51:5912–5923. doi:10.1007/s10853-016-9893-8 CrossRef Yildizhan MM, Sturm S, Gulgun MA (2016) Structural and electronic modifications on TiO2 anatase by Li, K or Nb doping below and above the solubility limit. J Mater Sci 51:5912–5923. doi:10.​1007/​s10853-016-9893-8 CrossRef
39.
Zurück zum Zitat Qi C, Ma X, Ning G et al (2015) Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries. Carbon 92:245–253CrossRef Qi C, Ma X, Ning G et al (2015) Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries. Carbon 92:245–253CrossRef
40.
Zurück zum Zitat Liu Q, Wu Z, Ma Z et al (2015) One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. Electrochim Acta 177:298–303CrossRef Liu Q, Wu Z, Ma Z et al (2015) One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. Electrochim Acta 177:298–303CrossRef
41.
Zurück zum Zitat Bag S, Mondal B, Das AK, Raj CR (2015) Nitrogen and sulfur dual-doped reduced graphene oxide: synergistic effect of dopants towards oxygen reduction reaction. Electrochim Acta 163:16–23CrossRef Bag S, Mondal B, Das AK, Raj CR (2015) Nitrogen and sulfur dual-doped reduced graphene oxide: synergistic effect of dopants towards oxygen reduction reaction. Electrochim Acta 163:16–23CrossRef
42.
Zurück zum Zitat Ma X, Ning G, Sun Y, Pu Y, Gao J (2014) High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79:310–320CrossRef Ma X, Ning G, Sun Y, Pu Y, Gao J (2014) High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79:310–320CrossRef
43.
Zurück zum Zitat Shao D, Tang D, Yang J, Li Y, Zhang L (2015) Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J Power Sources 297:344–350CrossRef Shao D, Tang D, Yang J, Li Y, Zhang L (2015) Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J Power Sources 297:344–350CrossRef
44.
Zurück zum Zitat Yang Y, Wang S, Zhang J, Li H, Tang Z, Wang X (2015) Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorg Chem Front 2:931–937CrossRef Yang Y, Wang S, Zhang J, Li H, Tang Z, Wang X (2015) Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorg Chem Front 2:931–937CrossRef
45.
Zurück zum Zitat Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater117:75–90CrossRef Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater117:75–90CrossRef
46.
Zurück zum Zitat Marinović-Cincović M, Janković B, Milićević B, Antić Ž, Whiffen RK, Dramićanin MD (2013) The comparative kinetic analysis of the non-isothermal crystallization process of Eu3+ doped Zn2SiO4 powders prepared via polymer induced sol-gel method. Powder Technol 249:497–512CrossRef Marinović-Cincović M, Janković B, Milićević B, Antić Ž, Whiffen RK, Dramićanin MD (2013) The comparative kinetic analysis of the non-isothermal crystallization process of Eu3+ doped Zn2SiO4 powders prepared via polymer induced sol-gel method. Powder Technol 249:497–512CrossRef
47.
Zurück zum Zitat Zhao D, Xiao Y, Wang X, Gao Q, Cao M (2014) Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 7:124–133CrossRef Zhao D, Xiao Y, Wang X, Gao Q, Cao M (2014) Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 7:124–133CrossRef
48.
Zurück zum Zitat Won JM, Lee J-H, Kang YC (2015) Electrochemical properties of yolk-shell-structured Zn-Fe-S multicomponent sulfide materials with a 1:2 Zn/Fe molar ratio. Chem-Eur J 21:1429–1433CrossRef Won JM, Lee J-H, Kang YC (2015) Electrochemical properties of yolk-shell-structured Zn-Fe-S multicomponent sulfide materials with a 1:2 Zn/Fe molar ratio. Chem-Eur J 21:1429–1433CrossRef
Metadaten
Titel
Sulfur-doped ZnFe2O4 nanoparticles with enhanced lithium storage capabilities
verfasst von
Longying Nie
Huijun Wang
Jingjing Ma
Sheng Liu
Ruo Yuan
Publikationsdatum
14.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0373-y

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Science 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.