Skip to main content

2024 | OriginalPaper | Buchkapitel

Sunflower Optimization with Elite Learning Strategy (SFO-ELS) for Antenna Selection in Massive MIMO Subarray Switching Architecture

verfasst von : Snehal Gaikwad, P. Malathi

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Massive MIMO is a promising technology used by fifth generation of wireless technology to increase the channel capacity significantly. But the use of RF transceivers for every antenna at the base station increases hardware complexity and implementation cost of the system making it very challenging for deployment. This paper focuses on addressing the hardware complexity and cost challenges associated with Massive Multiple-Input Multiple-Output systems. To mitigate these challenges, an efficient antenna selection algorithm is essential for identifying a subset of antennas that contribute maximum to the channel capacity. By employing advanced antenna selection schemes, this study aims to identify the most effective approach for optimizing antenna selection in Massive MIMO technology. The Sunflower Optimization algorithm, combined with the elite learning strategy, offers a novel approach to antenna selection in Massive MIMO subarray switching architecture. It leverages the benefits of both the SFO algorithm and the elite learning strategy to improve the selection of antennas, thereby optimizing system performance. Sunflower Optimization with elite learning strategy has been proposed and evaluated the effectiveness of the simulated SFO algorithm by comparing it with traditional approaches. The result shows that the proposed method for antenna selection significantly improves upon other methods offering a more efficient and effective approach for enhanced channel capacity in a Massive MIMO system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Varshney R, Jain P, Vijay S (2018) Massive MIMO systems in wireless communication. In: 2nd international conference on micro-electronics and telecommunication engineering 2018, pp 39–44. IEEE, Ghaziabad Varshney R, Jain P, Vijay S (2018) Massive MIMO systems in wireless communication. In: 2nd international conference on micro-electronics and telecommunication engineering 2018, pp 39–44. IEEE, Ghaziabad
2.
Zurück zum Zitat Gheorghe C, Dragomir R, Alexandru D (2019) Massive MIMO technology for 5G adaptive networks. In: 11th international conference on electronics, computers and artificial intelligence, ECAI-2019, pp 1–4. IEEE, Romania Gheorghe C, Dragomir R, Alexandru D (2019) Massive MIMO technology for 5G adaptive networks. In: 11th international conference on electronics, computers and artificial intelligence, ECAI-2019, pp 1–4. IEEE, Romania
3.
Zurück zum Zitat Surya KNR, Prasad V, Hossain E, Bhargava VK (2017) Energy efficiency in massive MIMO-based 5G networks: opportunities and challenges. IEEE Trans Wirel Commun 24(3):86–94 Surya KNR, Prasad V, Hossain E, Bhargava VK (2017) Energy efficiency in massive MIMO-based 5G networks: opportunities and challenges. IEEE Trans Wirel Commun 24(3):86–94
4.
Zurück zum Zitat Saddam Hussain Sk, Yaseen SM, Barman K (2016) An overview of massive MIMO system in 5G. Int J Circ Theor Appl 9(11):4957–4968 Saddam Hussain Sk, Yaseen SM, Barman K (2016) An overview of massive MIMO system in 5G. Int J Circ Theor Appl 9(11):4957–4968
5.
Zurück zum Zitat Gao Y, Vinck H, Kaiser T (2018) Massive MIMO antenna selection: switching architectures, capacity bounds, and optimal antenna selection algorithms. IEEE Trans Signal Process 66(5):1346–1360MathSciNetCrossRef Gao Y, Vinck H, Kaiser T (2018) Massive MIMO antenna selection: switching architectures, capacity bounds, and optimal antenna selection algorithms. IEEE Trans Signal Process 66(5):1346–1360MathSciNetCrossRef
6.
Zurück zum Zitat Gao Y, Jiang W, Kaiser T (2015) Bidirectional branch and bound based antenna selection in massive MIMO systems. In: 26th annual international symposium on personal, Indoor, and mobile radio communications (PIMRC), pp563–568. IEEE, Hong Kong Gao Y, Jiang W, Kaiser T (2015) Bidirectional branch and bound based antenna selection in massive MIMO systems. In: 26th annual international symposium on personal, Indoor, and mobile radio communications (PIMRC), pp563–568. IEEE, Hong Kong
7.
Zurück zum Zitat Wang BH, Hui HT, Leong M-S (2010) Global and fast receiver antenna selection for MIMO systems. IEEE Trans Commun 58(9):2505–2510 Wang BH, Hui HT, Leong M-S (2010) Global and fast receiver antenna selection for MIMO systems. IEEE Trans Commun 58(9):2505–2510
8.
Zurück zum Zitat Mendonç MOK, Diniz PSR, Ferreira TN, Lovisolo L (2020) Antenna selection in massive MIMO based on greedy algorithms. IEEE Trans Wirel Commun 19(3):1868–1881 Mendonç MOK, Diniz PSR, Ferreira TN, Lovisolo L (2020) Antenna selection in massive MIMO based on greedy algorithms. IEEE Trans Wirel Commun 19(3):1868–1881
9.
Zurück zum Zitat Gao Y, Kaiser T (2016) Antenna selection in massive MIMO systems: full-array selection or subarray selection? In: IEEE sensor array multichannel signal processing workshop, pp 1–5. IEEE, Brazil Gao Y, Kaiser T (2016) Antenna selection in massive MIMO systems: full-array selection or subarray selection? In: IEEE sensor array multichannel signal processing workshop, pp 1–5. IEEE, Brazil
10.
Zurück zum Zitat Azeem H, Ullah MA (2019) Sub-array based antenna selection scheme for massive MIMO in 5G. In: International conference on cyber-living, cyber-syndrome and cyber-health, pp 38–50. Springer, Beijing Azeem H, Ullah MA (2019) Sub-array based antenna selection scheme for massive MIMO in 5G. In: International conference on cyber-living, cyber-syndrome and cyber-health, pp 38–50. Springer, Beijing
11.
Zurück zum Zitat Abdullah Z, Tsimenids CC, Johnston M (2016) Tabu search Vs. bio-inspired algorithms for antenna selection in spatially correlated massive MIMO uplink channels. In: 24th European signal processing conference (EUSIPCO), pp 41–45. IEEE, Budapast Abdullah Z, Tsimenids CC, Johnston M (2016) Tabu search Vs. bio-inspired algorithms for antenna selection in spatially correlated massive MIMO uplink channels. In: 24th European signal processing conference (EUSIPCO), pp 41–45. IEEE, Budapast
12.
Zurück zum Zitat Fountoukidis KC, Siakavara K (2017) Antenna selection for MIMO systems using biogeography-based optimization. In: International workshop on antenna technology: small antennas, innovative structures, and applications (iWAT), pp 319–322. IEEE, Athens Fountoukidis KC, Siakavara K (2017) Antenna selection for MIMO systems using biogeography-based optimization. In: International workshop on antenna technology: small antennas, innovative structures, and applications (iWAT), pp 319–322. IEEE, Athens
13.
Zurück zum Zitat Du L, Li L, Xu Y (2016) A genetic antenna selection algorithm with heuristic beamforming for massive MIMO systems. In: 19th international symposium on wireless personal multimedia communications, pp 49–52. IEEE, Shenzhen Du L, Li L, Xu Y (2016) A genetic antenna selection algorithm with heuristic beamforming for massive MIMO systems. In: 19th international symposium on wireless personal multimedia communications, pp 49–52. IEEE, Shenzhen
14.
Zurück zum Zitat Mohamed A, Shaheen M, Hasanien HM, Mekhamer SF, Talaat HEA (2019) Optimal power flow of power systems including distributed generation units using sunflower optimization algorithm. IEEE Access 7:109289–109300 Mohamed A, Shaheen M, Hasanien HM, Mekhamer SF, Talaat HEA (2019) Optimal power flow of power systems including distributed generation units using sunflower optimization algorithm. IEEE Access 7:109289–109300
15.
Zurück zum Zitat Gomes GF, Cunha SSD, Ancelotti AC (2019) A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Springer J Eng Comput 35(5):619–626CrossRef Gomes GF, Cunha SSD, Ancelotti AC (2019) A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Springer J Eng Comput 35(5):619–626CrossRef
16.
Zurück zum Zitat Raslan AF, Ali AF, Darwish A, El-Sherbiny HM (2021) An improved sunflower optimization algorithm for cluster head selection in the internet of things. IEEE Access 9:156171–156186 Raslan AF, Ali AF, Darwish A, El-Sherbiny HM (2021) An improved sunflower optimization algorithm for cluster head selection in the internet of things. IEEE Access 9:156171–156186
17.
Zurück zum Zitat Shaheen AM, Elattar EE, El-Sehiemy RA, Elsayed AM (2021) An improved sunflower optimization algorithm-based Monte Carlo simulation for efficiency improvement of radial distribution systems considering wind power uncertainty. IEEE Access 9:2332–2344CrossRef Shaheen AM, Elattar EE, El-Sehiemy RA, Elsayed AM (2021) An improved sunflower optimization algorithm-based Monte Carlo simulation for efficiency improvement of radial distribution systems considering wind power uncertainty. IEEE Access 9:2332–2344CrossRef
18.
Zurück zum Zitat Zhan Y, Li Y, Zhao H, Zhou H (2020) Adaptive multi-objective particle swarm optimization based on competitive learning. In: 11th international conference on prognostics and system health management, pp 226–231. IEEE, Jinan, China Zhan Y, Li Y, Zhao H, Zhou H (2020) Adaptive multi-objective particle swarm optimization based on competitive learning. In: 11th international conference on prognostics and system health management, pp 226–231. IEEE, Jinan, China
Metadaten
Titel
Sunflower Optimization with Elite Learning Strategy (SFO-ELS) for Antenna Selection in Massive MIMO Subarray Switching Architecture
verfasst von
Snehal Gaikwad
P. Malathi
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_15