Skip to main content
Erschienen in: Energy Systems 1/2019

12.01.2018 | Original Paper

Super-twisting sliding mode control approach with its application to wind turbine systems

verfasst von: F. Zargham, A. H. Mazinan

Erschienen in: Energy Systems | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wind turbine technologies witness a booming increase in outperforming a set of traditional techniques with respect to state-of-the-art, where Europe plays the vanguard role to highlight the last investigated outcomes. It is to note that turbine systems with longer blades make it possible to extract power from wind, efficiently, accurately and economically. These types of machines are generally able to deal with higher wind velocities by providing their blades to be pitched, due to the fact that the nonlinear nature of the system under control necessitates the realization of nonconventional, efficient and reliable control approaches. In a word, the traditional ones do not have the sufficient merit to maintain the closed loop performance in the presence of disturbances and uncertainties. A possible solution to focus on the above-referenced point is to design the robust nonlinear control technique with rapid response and high accuracy to be free of any perturbation toward uncertainties. Regarding determining effect of the blade pitch control in the output power, the current research aims us to concentrate on delivering an acceptable power to the grid though controlling pitch angles of wing turbine. The novelty behind the research is to investigate the efficient formulation regarding the high-order super-twisting sliding mode blade pitch control approach to ameliorate the effects of linearization and also to reduce the chattering of applied force signal in the wind turbine systems, in order to cope with higher wind velocities through pitch angle accurately. The results investigated in the present research indicate that the states of the system under control can be desirable and the deviations of the control inputs are somehow negligible via the proposed control one that usher to its robust behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohammadi, K., Mostafaeipour, A., Sedaghat, A., Shamshirband, S., Petković, D.: Application and economic viability of wind turbine installation in Lutak, Iran. Environ. Earth Sci. 75(3), 1–16 (2016) Mohammadi, K., Mostafaeipour, A., Sedaghat, A., Shamshirband, S., Petković, D.: Application and economic viability of wind turbine installation in Lutak, Iran. Environ. Earth Sci. 75(3), 1–16 (2016)
2.
Zurück zum Zitat Phan, D.H., Huang, S.: Super-twisting sliding control design of three-phase inverter for stand-alone distributed generation systems. J. Control Autom. Electr. Syst. 27(2), 179–88 (2016)CrossRef Phan, D.H., Huang, S.: Super-twisting sliding control design of three-phase inverter for stand-alone distributed generation systems. J. Control Autom. Electr. Syst. 27(2), 179–88 (2016)CrossRef
3.
Zurück zum Zitat Twidell, J., Weir, T.: Renewable Energy Resources. Routledge, New York (2015)CrossRef Twidell, J., Weir, T.: Renewable Energy Resources. Routledge, New York (2015)CrossRef
4.
Zurück zum Zitat Stiesdal H.: The Bonus 750 KW Wind Turbine, European Union Wind Energy Conference. pp. 215–218 (1996) Stiesdal H.: The Bonus 750 KW Wind Turbine, European Union Wind Energy Conference. pp. 215–218 (1996)
5.
Zurück zum Zitat Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., Villafáfila-Robles, R.: A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–71 (2012)CrossRef Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., Villafáfila-Robles, R.: A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–71 (2012)CrossRef
6.
Zurück zum Zitat Wang, B., Qian, Y., Zhang, Y.: Robust nonlinear controller design of wind turbine with doubly fed induction generator by using Hamiltonian energy approach. J. Control Theory Appl. 11(2), 282–87 (2013)MathSciNetCrossRef Wang, B., Qian, Y., Zhang, Y.: Robust nonlinear controller design of wind turbine with doubly fed induction generator by using Hamiltonian energy approach. J. Control Theory Appl. 11(2), 282–87 (2013)MathSciNetCrossRef
7.
Zurück zum Zitat Goudarzi, N., Zhu, W.D.: A review on the development of wind turbine generators across the world. Int. J. Dyn. Control 1(2), 192–202 (2013)CrossRef Goudarzi, N., Zhu, W.D.: A review on the development of wind turbine generators across the world. Int. J. Dyn. Control 1(2), 192–202 (2013)CrossRef
8.
Zurück zum Zitat Zhang, P., Huang, S.: Review of aeroelasticity for wind turbine: current status, research focus and future perspectives. Front. Energy 5(4), 419–34 (2011)MathSciNet Zhang, P., Huang, S.: Review of aeroelasticity for wind turbine: current status, research focus and future perspectives. Front. Energy 5(4), 419–34 (2011)MathSciNet
9.
Zurück zum Zitat Abdallah, I., Natarajan, A., Sorensen, J.D.: Influence of the control system on wind turbine loads during power production in extreme turbulence: structural reliability. Renew. Energy 87, 464–77 (2016)CrossRef Abdallah, I., Natarajan, A., Sorensen, J.D.: Influence of the control system on wind turbine loads during power production in extreme turbulence: structural reliability. Renew. Energy 87, 464–77 (2016)CrossRef
10.
Zurück zum Zitat Evangelista, C., Valenciaga, F., Puleston, P.: Active and reactive power control for wind turbine based on a mimo 2-sliding mode algorithm with variable gains. IEEE Trans. Energy Convers. 28(3), 682–89 (2013)CrossRef Evangelista, C., Valenciaga, F., Puleston, P.: Active and reactive power control for wind turbine based on a mimo 2-sliding mode algorithm with variable gains. IEEE Trans. Energy Convers. 28(3), 682–89 (2013)CrossRef
11.
Zurück zum Zitat Corradini, M.L., Ippoliti, G., Orlando, G.: Robust control of variable-speed wind turbine systems based on an aerodynamic torque observer. IEEE Trans. Control Syst. Technol. 21(4), 1199–206 (2013)CrossRef Corradini, M.L., Ippoliti, G., Orlando, G.: Robust control of variable-speed wind turbine systems based on an aerodynamic torque observer. IEEE Trans. Control Syst. Technol. 21(4), 1199–206 (2013)CrossRef
12.
Zurück zum Zitat Lin, W.M., Hong, C.M., Ou, T.C., Chiu, T.M.: Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN. Energy Convers. Manag. 52(2), 1244–51 (2011)CrossRef Lin, W.M., Hong, C.M., Ou, T.C., Chiu, T.M.: Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN. Energy Convers. Manag. 52(2), 1244–51 (2011)CrossRef
13.
Zurück zum Zitat Jiao, B., Wang, L.: RBF neural network sliding mode control for variable-speed adjustable-pitch system of wind turbine. In: IEEE International Conference on Electrical and Control Engineering (2010) Jiao, B., Wang, L.: RBF neural network sliding mode control for variable-speed adjustable-pitch system of wind turbine. In: IEEE International Conference on Electrical and Control Engineering (2010)
14.
Zurück zum Zitat Belabbas, B., Allaoui, T., Tadjine, M., Denai, M.: Power management and control strategies for off-grid hybrid power systems with renewable energies and storage. Energy Syst. (2017) (in press) Belabbas, B., Allaoui, T., Tadjine, M., Denai, M.: Power management and control strategies for off-grid hybrid power systems with renewable energies and storage. Energy Syst. (2017) (in press)
15.
Zurück zum Zitat Falehi, A.D., Rafiee, M.: Fault ride-through capability enhancement of DFIG-based wind turbine using novel dynamic voltage restorer based on two switches boost converter coupled with quinary multi-level inverter. Energy Syst. (2017) (in press) Falehi, A.D., Rafiee, M.: Fault ride-through capability enhancement of DFIG-based wind turbine using novel dynamic voltage restorer based on two switches boost converter coupled with quinary multi-level inverter. Energy Syst. (2017) (in press)
16.
Zurück zum Zitat Xu, L., Yang, X., Liu, X., Xu, D.: Based on adaptive fuzzy sliding mode controller. In: 7th IEEE World Congress on Intelligent Control and Automation (2008) Xu, L., Yang, X., Liu, X., Xu, D.: Based on adaptive fuzzy sliding mode controller. In: 7th IEEE World Congress on Intelligent Control and Automation (2008)
17.
Zurück zum Zitat Aghatehrani, R., Kavasseri, R.: Sensitivity-analysis-based sliding mode control for voltage regulation in microgrids. IEEE Trans. Sustain. Energy 4(1), 50–57 (2013)CrossRef Aghatehrani, R., Kavasseri, R.: Sensitivity-analysis-based sliding mode control for voltage regulation in microgrids. IEEE Trans. Sustain. Energy 4(1), 50–57 (2013)CrossRef
18.
Zurück zum Zitat Susperregui, A., Martinez, M.I., Tapia, G., Vechiu, I.: Second-order sliding-mode controller design and tuning for grid synchronization and power control of a wind turbine-driven DFIG. IET Renew. Power Gener. 7(5), 540–51 (2013)CrossRef Susperregui, A., Martinez, M.I., Tapia, G., Vechiu, I.: Second-order sliding-mode controller design and tuning for grid synchronization and power control of a wind turbine-driven DFIG. IET Renew. Power Gener. 7(5), 540–51 (2013)CrossRef
19.
Zurück zum Zitat Martinez, M., Susperregui, A., Tapia, G., Xu, L.: Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew. Power Gener. 7(4), 370–79 (2013)CrossRef Martinez, M., Susperregui, A., Tapia, G., Xu, L.: Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew. Power Gener. 7(4), 370–79 (2013)CrossRef
20.
Zurück zum Zitat Hu, J., Nian, H., Hu, B., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of DFIG using sliding-mode control approach. IEEE Trans. Energy Convers. 25(4), 1028–39 (2010)CrossRef Hu, J., Nian, H., Hu, B., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of DFIG using sliding-mode control approach. IEEE Trans. Energy Convers. 25(4), 1028–39 (2010)CrossRef
21.
Zurück zum Zitat Benelghali, S., Benbouzid, M.E.H., Charpentier, J.F., Ahmed-Ali, T., Munteanu, I.: Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans. Ind. Electron. 58(1), 118–26 (2011)CrossRef Benelghali, S., Benbouzid, M.E.H., Charpentier, J.F., Ahmed-Ali, T., Munteanu, I.: Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans. Ind. Electron. 58(1), 118–26 (2011)CrossRef
22.
Zurück zum Zitat Yan, J., Lin, H., Feng, Y., Guo, X., Huang, Y., Zhu, Z.Q.: Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system. IET Renew. Power Gener. 7(1), 28–35 (2013)CrossRef Yan, J., Lin, H., Feng, Y., Guo, X., Huang, Y., Zhu, Z.Q.: Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system. IET Renew. Power Gener. 7(1), 28–35 (2013)CrossRef
23.
Zurück zum Zitat Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., Fujita, H., Sekine, H.: Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans. Energy Convers. 21(2), 467–75 (2006)CrossRef Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., Fujita, H., Sekine, H.: Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans. Energy Convers. 21(2), 467–75 (2006)CrossRef
24.
Zurück zum Zitat Kim, I.S., Kim, M.B., Youn, M.J.: New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron. 53(4), 1027–35 (2006)CrossRef Kim, I.S., Kim, M.B., Youn, M.J.: New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron. 53(4), 1027–35 (2006)CrossRef
25.
Zurück zum Zitat Koutroulis, E., Kalaitzakis, K.: Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans. Ind. Electron. 53(2), 486–94 (2006)CrossRef Koutroulis, E., Kalaitzakis, K.: Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans. Ind. Electron. 53(2), 486–94 (2006)CrossRef
26.
Zurück zum Zitat Beltran, B., Ahmed-Ali, T., Benbouzid, M.E.H.: Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans. Energy Convers. 23(2), 551–58 (2008)CrossRef Beltran, B., Ahmed-Ali, T., Benbouzid, M.E.H.: Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans. Energy Convers. 23(2), 551–58 (2008)CrossRef
27.
Zurück zum Zitat De Battista, H., Mantz, R.J., Christiansen, C.F.: Dynamical sliding mode power control of wind driven induction generators. IEEE Trans. Energy Convers. 15(4), 451–57 (2000)CrossRef De Battista, H., Mantz, R.J., Christiansen, C.F.: Dynamical sliding mode power control of wind driven induction generators. IEEE Trans. Energy Convers. 15(4), 451–57 (2000)CrossRef
28.
Zurück zum Zitat Thomsen, S.C.: Nonlinear control of a wind turbine. Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark (2006) Thomsen, S.C.: Nonlinear control of a wind turbine. Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark (2006)
29.
Zurück zum Zitat Slootweg, J.G., Polinder, H., Kling, W.L.: Dynamic modeling of a wind turbine with doubly fed induction generator. In: Power Engineering Society Summer Meeting. IEEE (2001) Slootweg, J.G., Polinder, H., Kling, W.L.: Dynamic modeling of a wind turbine with doubly fed induction generator. In: Power Engineering Society Summer Meeting. IEEE (2001)
30.
Zurück zum Zitat Rivera, J., Raygoza, J.J., Mora, C., Garcia, L., Ortega, S.: Super-Twisting Sliding Mode in Motion Control Systems. INTECH Open Access Publisher, Croatia (2011) Rivera, J., Raygoza, J.J., Mora, C., Garcia, L., Ortega, S.: Super-Twisting Sliding Mode in Motion Control Systems. INTECH Open Access Publisher, Croatia (2011)
31.
Zurück zum Zitat Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control (2008) Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control (2008)
33.
Metadaten
Titel
Super-twisting sliding mode control approach with its application to wind turbine systems
verfasst von
F. Zargham
A. H. Mazinan
Publikationsdatum
12.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 1/2019
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-018-0270-3

Weitere Artikel der Ausgabe 1/2019

Energy Systems 1/2019 Zur Ausgabe