Zum Inhalt
Erschienen in:

01.12.2016 | Original Article

Supporting geospatial privacy-preserving data mining of social media

verfasst von: Shuo Wang, Richard O. Sinnott

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the global adoption of smart mobile devices equipped with localization capabilities and broad popularity of microblogging facilities like Twitter, the need for personal privacy has never been greater. This is especially so with computational and data processing infrastructures such as clouds that support big data analysis. Differential privacy of geospatially tagged data such as tweets can potentially ensure that degrees of location privacy can be preserved while allowing the information (tweet contents) to be used for research and analysis, e.g., sentiment analysis. In this paper, we evaluate differential location pattern-mining approaches considering both privacy and precision of geo-located tweets clustered according to Geo-Locations of Interest (GLI). We consider both the privacy protection strength and the accuracy of results, measuring the Euclidean distance between centroids of real GLIs and obfuscated ones, i.e., those incorporating privacy-preserving noise. We record the performance and sensitivity of the approach. We show how privacy and location precision are trade-offs, i.e., the higher the degree of privacy protection, the fewer the GLIs will be identified. We also quantify these trade-offs and their associated sensitivity levels. We illustrate the work through a big data case study on use of Twitter data for traffic-related data protection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
Supporting geospatial privacy-preserving data mining of social media
verfasst von
Shuo Wang
Richard O. Sinnott
Publikationsdatum
01.12.2016
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2016
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0417-y