Skip to main content

22.11.2023

SupportNet: a Deep Learning Based Channel Equalization Network for Multi-type Multipath Fading

verfasst von: Yibo Chen, Honglian Li, Shengbin Zhuang, Xing Wei

Erschienen in: Mobile Networks and Applications

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-speed moving receivers generate Doppler shift superimposed on multipath effects to produce serious self-interference in the signal, direct channel equalization is more difficult, often requiring channel estimation, although neural networks can perform channel estimation and channel equalization, the neural network training process requires both the corresponding channel estimation and channel equalization results of the two labels as a loss function. It is more difficult to take labels for channel estimation in realistic scenarios, there are small errors in channel estimation by various methods, and the use of a large number of channel estimation labels causes an increase in data cost. This paper proposes a channel equalisation model called SupportNet, which simulates both channel estimation and channel equalisation processes by inducing a sub-network into a model collapse state so that a part of the network acts like channel estimation without using channel estimation labels, allowing features to be separated and processed separately, and using the channel estimation results for channel equalisation to reduce BER. The property of neural networks that rely on gradient descent for training to produce pattern collapse allows the network to separate features without the need to add labels to each feature. The experimental results show that the homogeneous network can effectively reduce the impact caused by time-selective fading under the fast-fading channel generated by the physical layer emulation parameters of three mobile environment provided by the IEEE 802.11p standard, resulting in a lower BER.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Lee SW, Sarp S, Jeon DJ, Kim JH (2015) Smart water grid: the future water management platform. Desal Water Treat 55(2):339–346CrossRef Lee SW, Sarp S, Jeon DJ, Kim JH (2015) Smart water grid: the future water management platform. Desal Water Treat 55(2):339–346CrossRef
2.
Zurück zum Zitat Soltani M, Pourahmadi V, Sheikhzadeh H (2020) Pilot pattern design for deep learning-based channel estimation in OFDM systems. IEEE Wireless Commun Lett 9(12):2173–2176CrossRef Soltani M, Pourahmadi V, Sheikhzadeh H (2020) Pilot pattern design for deep learning-based channel estimation in OFDM systems. IEEE Wireless Commun Lett 9(12):2173–2176CrossRef
3.
Zurück zum Zitat Qiang Y, Shao X, Chen X (2020) A model-driven deep learning algorithm for joint activity detection and channel estimation. IEEE Commun Lett 24(11):2508–2512CrossRef Qiang Y, Shao X, Chen X (2020) A model-driven deep learning algorithm for joint activity detection and channel estimation. IEEE Commun Lett 24(11):2508–2512CrossRef
4.
Zurück zum Zitat Ye H, Li GY, Juang B (2017) Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun Lett 7(1):114–117CrossRef Ye H, Li GY, Juang B (2017) Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun Lett 7(1):114–117CrossRef
5.
Zurück zum Zitat Chang H et al (2021) A novel nonstationary 6G UAV-to-ground wireless channel model with 3-D arbitrary trajectory changes. IEEE Internet Things J 8(12):9865–9877CrossRef Chang H et al (2021) A novel nonstationary 6G UAV-to-ground wireless channel model with 3-D arbitrary trajectory changes. IEEE Internet Things J 8(12):9865–9877CrossRef
6.
Zurück zum Zitat Turan B, Coleri S (2021) Machine learning based channel modeling for vehicular visible light communication. IEEE Trans Veh Technol 70(10):9659–9672CrossRef Turan B, Coleri S (2021) Machine learning based channel modeling for vehicular visible light communication. IEEE Trans Veh Technol 70(10):9659–9672CrossRef
7.
Zurück zum Zitat Dat PT, Kanno A, Inagaki K, Rottenberg F, Yamamoto N, Kawanishi T (2019) High-speed and uninterrupted communication for high-speed trains by ultrafast WDM fiber-wireless backhaul system. J Lightwave Technol 37(1):205–217CrossRef Dat PT, Kanno A, Inagaki K, Rottenberg F, Yamamoto N, Kawanishi T (2019) High-speed and uninterrupted communication for high-speed trains by ultrafast WDM fiber-wireless backhaul system. J Lightwave Technol 37(1):205–217CrossRef
8.
Zurück zum Zitat Werner N, Edler B (2020) Time-varying time-frequency tilings using non-uniform orthogonal filterbanks based on MDCT analysis/synthesis and time domain aliasing reduction. IEEE Signal Process Lett 26(12):1783–1787CrossRef Werner N, Edler B (2020) Time-varying time-frequency tilings using non-uniform orthogonal filterbanks based on MDCT analysis/synthesis and time domain aliasing reduction. IEEE Signal Process Lett 26(12):1783–1787CrossRef
9.
Zurück zum Zitat Ma T, Jiang X, Wang Y, Li F (2020) A novel inter-carrier interference cancellation scheme in highly mobile environments. China Commun 17(12):194–205CrossRef Ma T, Jiang X, Wang Y, Li F (2020) A novel inter-carrier interference cancellation scheme in highly mobile environments. China Commun 17(12):194–205CrossRef
10.
Zurück zum Zitat Bedford MD, Hrovat A, Kennedy G, Javornik T, Foster P (2020) Modeling microwave propagation in natural caves using LiDAR and ray tracing. IEEE Trans Antennas Propag 68(5):3878–3888CrossRef Bedford MD, Hrovat A, Kennedy G, Javornik T, Foster P (2020) Modeling microwave propagation in natural caves using LiDAR and ray tracing. IEEE Trans Antennas Propag 68(5):3878–3888CrossRef
11.
Zurück zum Zitat Bomfin R, Chafii M, Nimr A, Fettweis G (2021) A robust baseband transceiver design for doubly-dispersive channels. IEEE Trans Wireless Commun 20(8):4781–4796CrossRef Bomfin R, Chafii M, Nimr A, Fettweis G (2021) A robust baseband transceiver design for doubly-dispersive channels. IEEE Trans Wireless Commun 20(8):4781–4796CrossRef
12.
Zurück zum Zitat Zhang Y et al (2019) Deep learning based single carrier communications over time-varying underwater acoustic channel. IEEE Access 7:38420–38430CrossRef Zhang Y et al (2019) Deep learning based single carrier communications over time-varying underwater acoustic channel. IEEE Access 7:38420–38430CrossRef
13.
Zurück zum Zitat Liu H, Yang X, Chen P, Sun M, Li B, Zhao C (2020) Deep learning based nonlinear signal detection in millimeter-wave communications. IEEE Access 8:158883–158892CrossRef Liu H, Yang X, Chen P, Sun M, Li B, Zhao C (2020) Deep learning based nonlinear signal detection in millimeter-wave communications. IEEE Access 8:158883–158892CrossRef
14.
Zurück zum Zitat Ji X, Wang J, Li Y, Sun Q, Xu C (2020) Modulation recognition in maritime multipath channels: a blind equalization-aided deep learning approach. China Commun 17(3):12–25CrossRef Ji X, Wang J, Li Y, Sun Q, Xu C (2020) Modulation recognition in maritime multipath channels: a blind equalization-aided deep learning approach. China Commun 17(3):12–25CrossRef
15.
Zurück zum Zitat Honkala M, Korpi D, Huttunen JMJ (2021) DeepRx: fully convolutional deep learning receiver. IEEE Trans Wireless Commun 20(6):3925–3940CrossRef Honkala M, Korpi D, Huttunen JMJ (2021) DeepRx: fully convolutional deep learning receiver. IEEE Trans Wireless Commun 20(6):3925–3940CrossRef
16.
Zurück zum Zitat Li Y, Wang B, Shao G, Shao S, Pei X (2020) Blind detection of underwater acoustic communication signals based on deep learning. IEEE Access 8:204114–204131CrossRef Li Y, Wang B, Shao G, Shao S, Pei X (2020) Blind detection of underwater acoustic communication signals based on deep learning. IEEE Access 8:204114–204131CrossRef
17.
Zurück zum Zitat Luo C, Ji J, Wang Q, Chen X, Li P (2020) Channel state information prediction for 5G wireless communications: a deep learning approach. IEEE Trans Netw Sci Eng 7(1):227–236MathSciNetCrossRef Luo C, Ji J, Wang Q, Chen X, Li P (2020) Channel state information prediction for 5G wireless communications: a deep learning approach. IEEE Trans Netw Sci Eng 7(1):227–236MathSciNetCrossRef
18.
Zurück zum Zitat Ghamisi P, Yokoya N (2018) IMG2DSM: height simulation from single imagery using conditional generative adversarial net. IEEE Geosci Remote Sens Lett 15(5):794–798CrossRef Ghamisi P, Yokoya N (2018) IMG2DSM: height simulation from single imagery using conditional generative adversarial net. IEEE Geosci Remote Sens Lett 15(5):794–798CrossRef
19.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
20.
Zurück zum Zitat Anand K et al (2020) Pilot design for BEM-based channel estimation in doubly selective channel. IEEE Trans Veh Technol 69(2):1679–1694CrossRef Anand K et al (2020) Pilot design for BEM-based channel estimation in doubly selective channel. IEEE Trans Veh Technol 69(2):1679–1694CrossRef
21.
Zurück zum Zitat Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behaviour. IEEE Trans Inf Theory 50(12):3062–3080CrossRefMATH Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behaviour. IEEE Trans Inf Theory 50(12):3062–3080CrossRefMATH
22.
Zurück zum Zitat Stojanovic M, Preisig J (2009) Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun Mag 47(1):84–89CrossRef Stojanovic M, Preisig J (2009) Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun Mag 47(1):84–89CrossRef
23.
Zurück zum Zitat Biglieri E, Proakis J, Shamai S (1998) Fading channels: information-theoretic and communications aspects. IEEE Trans Inf Theory 44(6):2619–2692MathSciNetCrossRefMATH Biglieri E, Proakis J, Shamai S (1998) Fading channels: information-theoretic and communications aspects. IEEE Trans Inf Theory 44(6):2619–2692MathSciNetCrossRefMATH
24.
Zurück zum Zitat Ma T-M (2017) A novel PRCC scheme for OFDM systems over frequency-selective fading channels. IEEE Signal Process Lett 24(5):634–637CrossRef Ma T-M (2017) A novel PRCC scheme for OFDM systems over frequency-selective fading channels. IEEE Signal Process Lett 24(5):634–637CrossRef
25.
Zurück zum Zitat Yu Q-Y, Guo J-C, Gao S-Y, Meng W-X, Xiang W (2017) Minimum sum-mean-square-error frequency-domain pre-coding for downlink multi-user MIMO in the frequency-selective fading channel. IEEE Trans Wireless Commun 16(6):3573–3589CrossRef Yu Q-Y, Guo J-C, Gao S-Y, Meng W-X, Xiang W (2017) Minimum sum-mean-square-error frequency-domain pre-coding for downlink multi-user MIMO in the frequency-selective fading channel. IEEE Trans Wireless Commun 16(6):3573–3589CrossRef
26.
Zurück zum Zitat Weber SP, Andrews JG, Yang X, de Veciana G (2007) Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Trans Inf Theory 53(8):2799–2814MathSciNetCrossRefMATH Weber SP, Andrews JG, Yang X, de Veciana G (2007) Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Trans Inf Theory 53(8):2799–2814MathSciNetCrossRefMATH
27.
Zurück zum Zitat Chin W-L (2018) Nondata-aided doppler frequency estimation for OFDM systems over doubly selective fading channels. IEEE Trans Commun 66(9):4211–4221CrossRef Chin W-L (2018) Nondata-aided doppler frequency estimation for OFDM systems over doubly selective fading channels. IEEE Trans Commun 66(9):4211–4221CrossRef
28.
Zurück zum Zitat Liu X, Anand K, Guan YL, Deng L, Fan P, Zhou Z (2020) BEM-PSP for single-carrier and SC-FDMA communication over a doubly selective fading channel. IEEE Trans Wireless Commun 19(6):3924–3937CrossRef Liu X, Anand K, Guan YL, Deng L, Fan P, Zhou Z (2020) BEM-PSP for single-carrier and SC-FDMA communication over a doubly selective fading channel. IEEE Trans Wireless Commun 19(6):3924–3937CrossRef
29.
Zurück zum Zitat Gizzini K, Chafii M, Ehsanfar S, Shubair RM (2021) Temporal averaging LSTM-based channel estimation scheme for IEEE 802.11p standard. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021:01-07 Gizzini K, Chafii M, Ehsanfar S, Shubair RM (2021) Temporal averaging LSTM-based channel estimation scheme for IEEE 802.11p standard. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021:01-07
30.
Zurück zum Zitat Gui G, Huang H, Song Y, Sari H (2018) Deep learning for an effective nonorthogonal multiple access scheme. IEEE Trans Veh Technol 67(9):8440–8450CrossRef Gui G, Huang H, Song Y, Sari H (2018) Deep learning for an effective nonorthogonal multiple access scheme. IEEE Trans Veh Technol 67(9):8440–8450CrossRef
31.
Zurück zum Zitat Wang S, Yao R, Tsiftsis TA, Miridakis NI, Qi N (2020) Signal detection in uplink time-varying OFDM systems using RNN with bidirectional LSTM. IEEE Wireless Commun Lett 9(11):1947–1951CrossRef Wang S, Yao R, Tsiftsis TA, Miridakis NI, Qi N (2020) Signal detection in uplink time-varying OFDM systems using RNN with bidirectional LSTM. IEEE Wireless Commun Lett 9(11):1947–1951CrossRef
32.
Zurück zum Zitat Ali et al (2018) RaptorQ-based efficient multimedia transmission over cooperative cellular cognitive radio networks. IEEE Trans Veh Technol 67(8):7275–7289CrossRef Ali et al (2018) RaptorQ-based efficient multimedia transmission over cooperative cellular cognitive radio networks. IEEE Trans Veh Technol 67(8):7275–7289CrossRef
33.
Zurück zum Zitat Jiang W, Schotten HD (2020) Deep learning for fading channel prediction. IEEE Open J Commun Soc 1:320–332CrossRef Jiang W, Schotten HD (2020) Deep learning for fading channel prediction. IEEE Open J Commun Soc 1:320–332CrossRef
34.
Zurück zum Zitat Kim Y-K, Oh J-M, Shin Y-H, Mun C (2014) Time and frequency domain channel estimation scheme for IEEE 802.11p. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014:1085–1090 Kim Y-K, Oh J-M, Shin Y-H, Mun C (2014) Time and frequency domain channel estimation scheme for IEEE 802.11p. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014:1085–1090
35.
Zurück zum Zitat Fernandez JA, Borries K, Cheng L, Kumar BV, Stancil DD, Bai F (2012) Performance of the 802.11p physical layer in vehicle-to-vehicle environments. IEEE Trans Veh Technol 61(1):3–14CrossRef Fernandez JA, Borries K, Cheng L, Kumar BV, Stancil DD, Bai F (2012) Performance of the 802.11p physical layer in vehicle-to-vehicle environments. IEEE Trans Veh Technol 61(1):3–14CrossRef
36.
Zurück zum Zitat Gizzini K, Chafii M (2022) A survey on deep learning based channel estimation in doubly dispersive environments. IEEE Access 10:70595–70619CrossRef Gizzini K, Chafii M (2022) A survey on deep learning based channel estimation in doubly dispersive environments. IEEE Access 10:70595–70619CrossRef
Metadaten
Titel
SupportNet: a Deep Learning Based Channel Equalization Network for Multi-type Multipath Fading
verfasst von
Yibo Chen
Honglian Li
Shengbin Zhuang
Xing Wei
Publikationsdatum
22.11.2023
Verlag
Springer US
Erschienen in
Mobile Networks and Applications
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02271-y