Skip to main content
Erschienen in: Environmental Earth Sciences 16/2016

01.08.2016 | Thematic Issue

Surface passivation model explains pyrite oxidation kinetics in column experiments with up to 11 bars p(O2)

verfasst von: Marton Berta, Frank Dethlefsen, Markus Ebert, Karsten Gundske, Andreas Dahmke

Erschienen in: Environmental Earth Sciences | Ausgabe 16/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite decades of research in numerous experimental and field studies, the reaction kinetics of pyrite oxidation is still not characterized for high partial pressures of oxygen and near-neutral pH-levels. These conditions potentially exist in aquifers where oxidative site remediation, temporary water storage, or a leakage from a compressed air energy storage facility is present. For planning and monitoring of such field operations, their potential side effects on protected natural resources like groundwater have to be characterized. Thereby, site-scale assessments of such side effects of subsurface use by numerically modeling geochemical changes caused by the presence of oxygen need parametrization. Also, a function transferring results from simple, low pressure experiments to high pressure environments requires experimental bases. Pyrite oxidation can be the main consequence of oxygen intruding reduced aquifers. In this study, pyrite oxidation kinetics was examined at oxygen partial pressures from 0 to 11 bars, corresponding to an air intrusion in up to 500 m depth, at neutral pH-levels in high and low pressure flow-through column experiments representing aquifer conditions. A reaction rate equation was developed and evaluated with 1D PHREEQC numerical reactive transport models using experimental data as transfer function between high pressure and low pressure experiments. This model development included an improvement of established rate laws with a passivation term, which is, in contrast to previously published functions, dependent on the partial pressure of oxygen. The resulting model on passivated oxidation kinetics of pyrite at high oxygen partial pressures was able to reproduce independent experimental results acquired using different experimental set-ups. This assessment found the passivation to overcome the theoretical increase in pyrite oxidation kinetics caused by elevating oxygen partial pressure. These findings contribute to future experimental and modeling efforts for risk assessment and monitoring of oxygen-rich plumes in the subsurface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943CrossRef Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943CrossRef
Zurück zum Zitat Bauer S, Pfeiffer W, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Proc 76:633–641CrossRef Bauer S, Pfeiffer W, Boockmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Proc 76:633–641CrossRef
Zurück zum Zitat Beckmann A, Gerhardt M, Zittwitz M, Martiensse M, Krieg R, Geistlinger H, Schirmer M (2007) Das OXYWALL-Projekt: Anwendung eines Verfahrens zur Direktgasinjektion von Sauerstoff zur in situ Sanierung von organisch kontaminierten Grundwässern. Altlasten Spektrum 4:153–159 Beckmann A, Gerhardt M, Zittwitz M, Martiensse M, Krieg R, Geistlinger H, Schirmer M (2007) Das OXYWALL-Projekt: Anwendung eines Verfahrens zur Direktgasinjektion von Sauerstoff zur in situ Sanierung von organisch kontaminierten Grundwässern. Altlasten Spektrum 4:153–159
Zurück zum Zitat Blight K, Ralph DE, Thurgate S (2000) Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy 58:227–237CrossRef Blight K, Ralph DE, Thurgate S (2000) Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy 58:227–237CrossRef
Zurück zum Zitat Courtin-Nomade A, Bril H, Bény J-M, Kunz M, Tamura N (2010) Sulfide oxidation observed using micro-Raman spectroscopy and micro-X-ray diffraction: the importance of water/rock ratios and pH conditions. Am Miner 95:582–591CrossRef Courtin-Nomade A, Bril H, Bény J-M, Kunz M, Tamura N (2010) Sulfide oxidation observed using micro-Raman spectroscopy and micro-X-ray diffraction: the importance of water/rock ratios and pH conditions. Am Miner 95:582–591CrossRef
Zurück zum Zitat Crotogino F, Mohmeyer KU, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. Spring 2001 Meeting Orlando, Florida, 15–18 Apr 2001 Crotogino F, Mohmeyer KU, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. Spring 2001 Meeting Orlando, Florida, 15–18 Apr 2001
Zurück zum Zitat Descourvières C, Hartog N, Patterson BM, Oldham C, Prommer H (2009) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem 25:261–275CrossRef Descourvières C, Hartog N, Patterson BM, Oldham C, Prommer H (2009) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem 25:261–275CrossRef
Zurück zum Zitat Gleisner M, Herbert RB Jr, Frogner Kockum PC (2006) Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem Geol 225:16–29CrossRef Gleisner M, Herbert RB Jr, Frogner Kockum PC (2006) Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem Geol 225:16–29CrossRef
Zurück zum Zitat Haase C, Dahmke A, Ebert M, Schäfer D, Dethlefsen F (2014) Suitability of existing numerical model codes and thermodynamic databases for the prognosis of calcite dissolution processes in near-surface sediments due to a CO2 leakage investigated by column experiments. Aquatic Geochem 20:639–661CrossRef Haase C, Dahmke A, Ebert M, Schäfer D, Dethlefsen F (2014) Suitability of existing numerical model codes and thermodynamic databases for the prognosis of calcite dissolution processes in near-surface sediments due to a CO2 leakage investigated by column experiments. Aquatic Geochem 20:639–661CrossRef
Zurück zum Zitat Hammack RW, Watzlaf GR (1990) The effect of oxygen on pyrite oxidation. In: Mining and reclamation conference and exhibition, Charleston, 23–26 Apr 1990 Hammack RW, Watzlaf GR (1990) The effect of oxygen on pyrite oxidation. In: Mining and reclamation conference and exhibition, Charleston, 23–26 Apr 1990
Zurück zum Zitat Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl Geochem 24:1626–1634CrossRef Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl Geochem 24:1626–1634CrossRef
Zurück zum Zitat Jørgensen CJ, Jacobsen OS, Elberling B, Aamand J (2009) Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ Sci Technol 43:4851–4857CrossRef Jørgensen CJ, Jacobsen OS, Elberling B, Aamand J (2009) Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ Sci Technol 43:4851–4857CrossRef
Zurück zum Zitat Koch S (2014) Experimental study on geochemical effects of methane leakages into groundwater. M.Sc.-Thesis at the Institute of Geosciences, Christian-Albrechts University Kiel Koch S (2014) Experimental study on geochemical effects of methane leakages into groundwater. M.Sc.-Thesis at the Institute of Geosciences, Christian-Albrechts University Kiel
Zurück zum Zitat Lefticariu L, Schimmelmann A, Pratt LM, Ripley EM (2007) Oxygen isotope partitioning during oxidation of pyrite by H2O2 and its dependence on temperature. Geochim Cosmochim Acta 71:5072–5088CrossRef Lefticariu L, Schimmelmann A, Pratt LM, Ripley EM (2007) Oxygen isotope partitioning during oxidation of pyrite by H2O2 and its dependence on temperature. Geochim Cosmochim Acta 71:5072–5088CrossRef
Zurück zum Zitat Lienen T, Westphal A, Würdemann H (2014) Mikrobiologische Parametrisierung und experimentelle Untersuchungen zum Verhalten von Mikroorganismen an geothermischen Anlagen (AP1.9). ANGUS + Meeting, Travemünde, 1–3 Sept 2014 Lienen T, Westphal A, Würdemann H (2014) Mikrobiologische Parametrisierung und experimentelle Untersuchungen zum Verhalten von Mikroorganismen an geothermischen Anlagen (AP1.9). ANGUS + Meeting, Travemünde, 1–3 Sept 2014
Zurück zum Zitat Long H, Dixon DG (2004) Pressure oxidation of pyrite in sulfuric acid media: a kinetic study. Hydrometallurgy 73:335–349CrossRef Long H, Dixon DG (2004) Pressure oxidation of pyrite in sulfuric acid media: a kinetic study. Hydrometallurgy 73:335–349CrossRef
Zurück zum Zitat McCray JE (2010) Mathematical modeling of air sparging for subsurface remediation: state of the art. J Hazard Mater 72:237–263CrossRef McCray JE (2010) Mathematical modeling of air sparging for subsurface remediation: state of the art. J Hazard Mater 72:237–263CrossRef
Zurück zum Zitat McKibben MA, Barnes HL (1986) Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim Cosmochim Acta 50:1509–1520CrossRef McKibben MA, Barnes HL (1986) Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim Cosmochim Acta 50:1509–1520CrossRef
Zurück zum Zitat Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta 55:471–482CrossRef Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta 55:471–482CrossRef
Zurück zum Zitat Nordstrom DK, McCleskey RB, Ball JW (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV acid-sulfate waters. Appl Geochem 24:191–207CrossRef Nordstrom DK, McCleskey RB, Ball JW (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV acid-sulfate waters. Appl Geochem 24:191–207CrossRef
Zurück zum Zitat Papangelakis VG, Demopoulos GP (1991) Acid pressure oxidation of pyrite: reaction kinetics. Hydrometallurgy 26:309–325CrossRef Papangelakis VG, Demopoulos GP (1991) Acid pressure oxidation of pyrite: reaction kinetics. Hydrometallurgy 26:309–325CrossRef
Zurück zum Zitat Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol Surv Tech Methods Book 6:497 Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol Surv Tech Methods Book 6:497
Zurück zum Zitat Pérez-López R, Cama J, Nieto JM, Ayora C, Saaltink MW (2009) Attenuation of pyrite oxidation with a fly ash pre-barrier: reactive transport modelling of column experiments. Appl Geochem 24:1712–1723CrossRef Pérez-López R, Cama J, Nieto JM, Ayora C, Saaltink MW (2009) Attenuation of pyrite oxidation with a fly ash pre-barrier: reactive transport modelling of column experiments. Appl Geochem 24:1712–1723CrossRef
Zurück zum Zitat Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRef Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRef
Zurück zum Zitat Safaei H, Keith DW, Hugo RJ (2013) Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization. Appl Energy 103:165–179CrossRef Safaei H, Keith DW, Hugo RJ (2013) Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization. Appl Energy 103:165–179CrossRef
Zurück zum Zitat Thomson NR, Johnson RL (2010) Air distribution during in situ air sparging: an overview of mathematical modeling. J Hazard Mater 72:265–282CrossRef Thomson NR, Johnson RL (2010) Air distribution during in situ air sparging: an overview of mathematical modeling. J Hazard Mater 72:265–282CrossRef
Zurück zum Zitat Tichomirowa M, Junghans M (2009) Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments. Appl Geochem 24:2072–2092CrossRef Tichomirowa M, Junghans M (2009) Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments. Appl Geochem 24:2072–2092CrossRef
Zurück zum Zitat Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:208–220CrossRef Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:208–220CrossRef
Zurück zum Zitat Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454CrossRef Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454CrossRef
Zurück zum Zitat Zhukov VV, Laari A, Koiranen T (2015) Kinetic modeling of high-pressure pyrite oxidation with parameter estimation and reliability analysis using the Markov chain monte carlo method. Ind Eng Chem Res 54:9920–9930CrossRef Zhukov VV, Laari A, Koiranen T (2015) Kinetic modeling of high-pressure pyrite oxidation with parameter estimation and reliability analysis using the Markov chain monte carlo method. Ind Eng Chem Res 54:9920–9930CrossRef
Metadaten
Titel
Surface passivation model explains pyrite oxidation kinetics in column experiments with up to 11 bars p(O2)
verfasst von
Marton Berta
Frank Dethlefsen
Markus Ebert
Karsten Gundske
Andreas Dahmke
Publikationsdatum
01.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 16/2016
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-016-5985-7

Weitere Artikel der Ausgabe 16/2016

Environmental Earth Sciences 16/2016 Zur Ausgabe