Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2020

01.02.2020

Surface plasmon based 1D-grating device for efficient sensing using noble metals

verfasst von: Sumera Afsheen, Tahir Iqbal, Seep Akram, Almas Bashir, Aqsa Tehseen, Muhammad Rafique, Muhammad Shakil, Muhammad Yaqoob Khan, Mohsin Ijaz

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents the design and optimization of device with 1D nanostructured grating modeled on gold (Au), silver (Ag) and copper (Cu) for sensing a minor variation in refractive index (RI). This small change in the adjacent media to metallic grating is detected quite effectively using the unique characteristic of the surface plasmon polaritons (SPPs). The electric field (E-field) of the SPPs penetrates into the nearby media which is very sensitive to slight change in RI. The grating devices has been simulated by using COMSOL Multiphysics 5.3a with periodicity 700 nm, film thickness 50 nm and optimum slit width 300 nm in correspondence with fundamental plasmonic mode. The 0th order transmission spectra have been extracted from each grating device by illuminating (through the substrate side) with p-polarized light at normal incidence. The change in RI of analyte studied to have a significant effect on the resonance wavelength. The sensitivity has been calculated as 700, 731 and 722 nm/RIU for Au, Ag and Cu grating devices respectively which is remarkable. The stability and quick sensing of Au-device make it suitable for application besides some other deficiencies (e.g. slightly less sensitivity as compared to Ag) which should be compromised. Near field analysis has been performed to apprehend the underlying physics connected with each resonance. The highest value of electric and magnetic fields (E-field and H-field) are obtained in the case of Au grating indicating the most efficient excitation of SPPs. This confirms the reasoning behind the efficient sensitivity of Au grating device and finds applications in medicine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRef
Zurück zum Zitat Bartlett, P., Baumberg, J., Coyle, S., Abdelsalam, M.: Optical properties of nanostructured metal films. Faraday Discuss. 125, 117–132 (2004)ADSCrossRef Bartlett, P., Baumberg, J., Coyle, S., Abdelsalam, M.: Optical properties of nanostructured metal films. Faraday Discuss. 125, 117–132 (2004)ADSCrossRef
Zurück zum Zitat Brolo, A.G., Gordon, R., Leathem, B., Kavanagh, K.L.: Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004)CrossRef Brolo, A.G., Gordon, R., Leathem, B., Kavanagh, K.L.: Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004)CrossRef
Zurück zum Zitat Cao, Q., Lalanne, P.: Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002)ADSCrossRef Cao, Q., Lalanne, P.: Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002)ADSCrossRef
Zurück zum Zitat De Leebeeck, A., Kumar, L.S., De Lange, V., Sinton, D., Gordon, R., Brolo, A.G.: On-chip surface-based detection with nanohole arrays. Anal. Chem. 79, 4094–4100 (2007)CrossRef De Leebeeck, A., Kumar, L.S., De Lange, V., Sinton, D., Gordon, R., Brolo, A.G.: On-chip surface-based detection with nanohole arrays. Anal. Chem. 79, 4094–4100 (2007)CrossRef
Zurück zum Zitat Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005)CrossRef Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005)CrossRef
Zurück zum Zitat Grande, M., Marani, R., Portincasa, F., Morea, G., Petruzzelli, V., D’Orazio, A., Marrocco, V., De Ceglia, D., Vincenti, M.: Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sens. Actuators. B Chem. 160, 1056–1062 (2011)CrossRef Grande, M., Marani, R., Portincasa, F., Morea, G., Petruzzelli, V., D’Orazio, A., Marrocco, V., De Ceglia, D., Vincenti, M.: Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sens. Actuators. B Chem. 160, 1056–1062 (2011)CrossRef
Zurück zum Zitat Grigorenko, A., Gleeson, H., Zhang, Y., Roberts, N., Sidorov, A., Panteleev, A.: Antisymmetric plasmon resonance in coupled gold nanoparticles as a sensitive tool for detection of local index of refraction. Appl. Phys. Lett. 88, 124103 (2006)ADSCrossRef Grigorenko, A., Gleeson, H., Zhang, Y., Roberts, N., Sidorov, A., Panteleev, A.: Antisymmetric plasmon resonance in coupled gold nanoparticles as a sensitive tool for detection of local index of refraction. Appl. Phys. Lett. 88, 124103 (2006)ADSCrossRef
Zurück zum Zitat Hanarp, P., Käll, M., Sutherland, D.S.: Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J. Phys. Chem. B 107, 5768–5772 (2003)CrossRef Hanarp, P., Käll, M., Sutherland, D.S.: Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J. Phys. Chem. B 107, 5768–5772 (2003)CrossRef
Zurück zum Zitat Homola, J., Piliarik, M.: Surface plasmon resonance (SPR) sensors. In: Surface Plasmon Resonance Based Sensors. Springer, pp. 45–67 (2006) Homola, J., Piliarik, M.: Surface plasmon resonance (SPR) sensors. In: Surface Plasmon Resonance Based Sensors. Springer, pp. 45–67 (2006)
Zurück zum Zitat Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G.V., Li, X., Marquez, M., Xia, Y.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)CrossRef Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G.V., Li, X., Marquez, M., Xia, Y.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)CrossRef
Zurück zum Zitat Huang, Y., Duan, X., Wei, Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)ADSCrossRef Huang, Y., Duan, X., Wei, Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)ADSCrossRef
Zurück zum Zitat Iqbal, T.: Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr. Appl. Phys. 15, 1445–1452 (2015)ADSCrossRef Iqbal, T.: Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr. Appl. Phys. 15, 1445–1452 (2015)ADSCrossRef
Zurück zum Zitat Iqbal, T., Afsheen, S.: Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr. Appl. Phys. 16, 453–458 (2016a)ADSCrossRef Iqbal, T., Afsheen, S.: Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr. Appl. Phys. 16, 453–458 (2016a)ADSCrossRef
Zurück zum Zitat Iqbal, T., Afsheen, S.: Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11, 1247–1256 (2016b)CrossRef Iqbal, T., Afsheen, S.: Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11, 1247–1256 (2016b)CrossRef
Zurück zum Zitat Iqbal, T., Afsheen, S.: One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12, 19–25 (2017)CrossRef Iqbal, T., Afsheen, S.: One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12, 19–25 (2017)CrossRef
Zurück zum Zitat Iqbal, T., Bashir, A., Shakil, M., Afsheen, S., Tehseen, A., Ijaz, M., Riaz, K.N.: Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14(2), 493–499 (2019a)CrossRef Iqbal, T., Bashir, A., Shakil, M., Afsheen, S., Tehseen, A., Ijaz, M., Riaz, K.N.: Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14(2), 493–499 (2019a)CrossRef
Zurück zum Zitat Iqbal, T., Khalil, S., Ijaz, M., Riaz, K.N., Khan, M.I., Shakil, M., Nabi, A.G., Javaid, M., Abrar, M., Afsheen, S.: Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap. Plasmonics 14(3), 775–783 (2019b)CrossRef Iqbal, T., Khalil, S., Ijaz, M., Riaz, K.N., Khan, M.I., Shakil, M., Nabi, A.G., Javaid, M., Abrar, M., Afsheen, S.: Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap. Plasmonics 14(3), 775–783 (2019b)CrossRef
Zurück zum Zitat Iqbal, T., Ijaz, M., Javaid, M., Rafique, M., Riaz, K.N., Tahir, M.B., Nabi, G., Abrar, M., Afsheen, S.: An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1), 147–154 (2019c)CrossRef Iqbal, T., Ijaz, M., Javaid, M., Rafique, M., Riaz, K.N., Tahir, M.B., Nabi, G., Abrar, M., Afsheen, S.: An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1), 147–154 (2019c)CrossRef
Zurück zum Zitat Iqbal, T., Farooq, M.U., Ijaz, M., Afsheen, S., Rizwan, M., Tahir, M.B.: Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics 14, 1099–1104 (2019d)CrossRef Iqbal, T., Farooq, M.U., Ijaz, M., Afsheen, S., Rizwan, M., Tahir, M.B.: Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics 14, 1099–1104 (2019d)CrossRef
Zurück zum Zitat Javaid, M., Iqbal, T.: Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11, 167–173 (2016)CrossRef Javaid, M., Iqbal, T.: Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11, 167–173 (2016)CrossRef
Zurück zum Zitat Law, M., Kind, H., Messer, B., Kim, F., Yang, P.: Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. 114, 2511–2514 (2002)CrossRef Law, M., Kind, H., Messer, B., Kim, F., Yang, P.: Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. 114, 2511–2514 (2002)CrossRef
Zurück zum Zitat Lee, S., Mayer, K.M., Hafner, J.H.: Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal. Chem. 81, 4450–4455 (2009)CrossRef Lee, S., Mayer, K.M., Hafner, J.H.: Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal. Chem. 81, 4450–4455 (2009)CrossRef
Zurück zum Zitat Li, W.-Y., Xu, L.-N., Chen, J.: Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851–857 (2005)CrossRef Li, W.-Y., Xu, L.-N., Chen, J.: Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851–857 (2005)CrossRef
Zurück zum Zitat Malyarchuk, V., Hua, F., Mack, N.H., Velasquez, V.T., White, J.O., Nuzzo, R.G., Rogers, J.A.: High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 13, 5669–5675 (2005)ADSCrossRef Malyarchuk, V., Hua, F., Mack, N.H., Velasquez, V.T., White, J.O., Nuzzo, R.G., Rogers, J.A.: High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 13, 5669–5675 (2005)ADSCrossRef
Zurück zum Zitat Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)CrossRef Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)CrossRef
Zurück zum Zitat McPhillips, J., Murphy, A., Jonsson, M.P., Hendren, W.R., Atkinson, R., Höök, F., Zayats, A.V., Pollard, R.J.: High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4, 2210–2216 (2010)CrossRef McPhillips, J., Murphy, A., Jonsson, M.P., Hendren, W.R., Atkinson, R., Höök, F., Zayats, A.V., Pollard, R.J.: High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4, 2210–2216 (2010)CrossRef
Zurück zum Zitat Miller, M.M., Lazarides, A.A.: Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 109, 21556–21565 (2005)CrossRef Miller, M.M., Lazarides, A.A.: Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 109, 21556–21565 (2005)CrossRef
Zurück zum Zitat Munir, M., Khan, M.I., Iqbal, T., Abrar, M., Tahir, M.B., ur Rehman, J., Ijaz, M., Nabi, G.: Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology 29(38), 385501 (2018)CrossRef Munir, M., Khan, M.I., Iqbal, T., Abrar, M., Tahir, M.B., ur Rehman, J., Ijaz, M., Nabi, G.: Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology 29(38), 385501 (2018)CrossRef
Zurück zum Zitat Palik, E.D.: Handbook of optical constants (A). J. Opt. Soc. Am. A 1 (1984) Palik, E.D.: Handbook of optical constants (A). J. Opt. Soc. Am. A 1 (1984)
Zurück zum Zitat Prasad, J., Zins, I., Branscheid, R., Becker, J., Koch, A.H., Fytas, G., Kolb, U., Sönnichsen, C.: Plasmonic core–satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 119, 5577–5582 (2015)CrossRef Prasad, J., Zins, I., Branscheid, R., Becker, J., Koch, A.H., Fytas, G., Kolb, U., Sönnichsen, C.: Plasmonic core–satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 119, 5577–5582 (2015)CrossRef
Zurück zum Zitat Raether, H.: Surface plasmons on smooth surfaces. In: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, pp. 4–39 (1988) Raether, H.: Surface plasmons on smooth surfaces. In: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, pp. 4–39 (1988)
Zurück zum Zitat Romanato, F., Ongarello, T., Zacco, G., Garoli, D., Zilio, P., Massari, M.: Extraordinary optical transmission in one-dimensional gold gratings: near-and far-field analysis. Appl. Opt. 50, 4529–4534 (2011)ADSCrossRef Romanato, F., Ongarello, T., Zacco, G., Garoli, D., Zilio, P., Massari, M.: Extraordinary optical transmission in one-dimensional gold gratings: near-and far-field analysis. Appl. Opt. 50, 4529–4534 (2011)ADSCrossRef
Zurück zum Zitat Rosengart, E.-H., Pockrand, I.: Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt. Lett. 1, 194–195 (1977)ADSCrossRef Rosengart, E.-H., Pockrand, I.: Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt. Lett. 1, 194–195 (1977)ADSCrossRef
Zurück zum Zitat Sreekanth, K.V., Alapan, Y., ElKabbash, M., Ilker, E., Hinczewski, M., Gurkan, U.A., De Luca, A., Strangi, G.: Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016)ADSCrossRef Sreekanth, K.V., Alapan, Y., ElKabbash, M., Ilker, E., Hinczewski, M., Gurkan, U.A., De Luca, A., Strangi, G.: Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016)ADSCrossRef
Zurück zum Zitat Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)CrossRef Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)CrossRef
Zurück zum Zitat Velázquez-González, J.S., Monzón-Hernández, D., Moreno-Hernández, D., Martínez-Piñón, F., Hernández-Romano, I.: Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 242, 912–920 (2017)CrossRef Velázquez-González, J.S., Monzón-Hernández, D., Moreno-Hernández, D., Martínez-Piñón, F., Hernández-Romano, I.: Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 242, 912–920 (2017)CrossRef
Zurück zum Zitat Wan, Q., Li, Q., Chen, Y., Wang, T.-H., He, X., Li, J., Lin, C.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)ADSCrossRef Wan, Q., Li, Q., Chen, Y., Wang, T.-H., He, X., Li, J., Lin, C.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)ADSCrossRef
Zurück zum Zitat Wang, C., Chu, X., Wu, M.: Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens. Actuators B Chem. 113, 320–323 (2006a)ADSCrossRef Wang, C., Chu, X., Wu, M.: Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens. Actuators B Chem. 113, 320–323 (2006a)ADSCrossRef
Zurück zum Zitat Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006b)ADSCrossRef Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006b)ADSCrossRef
Zurück zum Zitat Xiao, S., Zhang, J., Peng, L., Jeppesen, C., Malureanu, R., Kristensen, A., Mortensen, N.A.: Nearly zero transmission through periodically modulated ultrathin metal films. Appl. Phys. Lett. 97, 071116 (2010)ADSCrossRef Xiao, S., Zhang, J., Peng, L., Jeppesen, C., Malureanu, R., Kristensen, A., Mortensen, N.A.: Nearly zero transmission through periodically modulated ultrathin metal films. Appl. Phys. Lett. 97, 071116 (2010)ADSCrossRef
Zurück zum Zitat Zhang, X., Feng, S., Zhang, J., Zhai, T., Liu, H., Pang, Z.: Sensors based on plasmonic-photonic coupling in metallic photonic crystals. Sensors 12, 12082–12097 (2012)CrossRef Zhang, X., Feng, S., Zhang, J., Zhai, T., Liu, H., Pang, Z.: Sensors based on plasmonic-photonic coupling in metallic photonic crystals. Sensors 12, 12082–12097 (2012)CrossRef
Metadaten
Titel
Surface plasmon based 1D-grating device for efficient sensing using noble metals
verfasst von
Sumera Afsheen
Tahir Iqbal
Seep Akram
Almas Bashir
Aqsa Tehseen
Muhammad Rafique
Muhammad Shakil
Muhammad Yaqoob Khan
Mohsin Ijaz
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2020
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-2176-2

Weitere Artikel der Ausgabe 2/2020

Optical and Quantum Electronics 2/2020 Zur Ausgabe

Neuer Inhalt