Skip to main content

2025 | OriginalPaper | Buchkapitel

Surrogate Model-Assisted Bees Algorithm for Global Optimisation of Microwave Filters

verfasst von : Feiying Lan, Lu Qian, Marco Castellani, Yi Wang, D. T. Pham, Yongjing Wang

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microwave filter optimisation is an important example of black-box optimisation, where the objective function is unknown and requires full-wave electromagnetic (EM) simulations. This problem is challenging and even computationally intractable for commonly used global optimisation techniques due to the multimodal and computationally expensive nature of its objective function. This chapter proposes the surrogate-model-assisted Bees Algorithm. Gaussian process regression is used to model the unknown objective function and prescreen promising candidates for expensive EM simulations. In this scheme, the Bees algorithm is used to perform a global search and intelligent sampling for surrogate modelling. This method was evaluated on 7 benchmark functions and compared with the standard Bees Algorithm. Mann‒Whitney U tests indicated the statistical significance of the results. A case study involving a microwave dielectric filter demonstrated the significant advantages of using the proposed method in terms of high-quality design and a reduced number of EM simulation-based evaluations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Olsson DM, Nelson LS (1975) The Nelder-Mead simplex procedure for function minimization. Technometrics 17:45–51CrossRef Olsson DM, Nelson LS (1975) The Nelder-Mead simplex procedure for function minimization. Technometrics 17:45–51CrossRef
3.
Zurück zum Zitat Koziel S (2017) Space mapping: performance, reliability, open problems and perspectives. In: 2017 IEEE MTT-S international microwave symposium (IMS), pp 1512–1514 Koziel S (2017) Space mapping: performance, reliability, open problems and perspectives. In: 2017 IEEE MTT-S international microwave symposium (IMS), pp 1512–1514
4.
Zurück zum Zitat Melgarejo JC, Ossorio J, Cogollos S, Guglielmi M, Boria VE, Bandler JW (2019) On space mapping techniques for microwave filter tuning. IEEE Trans Microw Theory Tech 67:4860–4870CrossRef Melgarejo JC, Ossorio J, Cogollos S, Guglielmi M, Boria VE, Bandler JW (2019) On space mapping techniques for microwave filter tuning. IEEE Trans Microw Theory Tech 67:4860–4870CrossRef
5.
Zurück zum Zitat Swanson DG (2007) Narrow-band microwave filter design. IEEE Microw Mag 8:105–114CrossRef Swanson DG (2007) Narrow-band microwave filter design. IEEE Microw Mag 8:105–114CrossRef
6.
Zurück zum Zitat Rautio JC (2017) Tuning ports in the middle of resonators. In: 2017 IEEE MTT-S international microwave symposium (IMS), pp 1509–1511 Rautio JC (2017) Tuning ports in the middle of resonators. In: 2017 IEEE MTT-S international microwave symposium (IMS), pp 1509–1511
7.
Zurück zum Zitat Fakhfakh M, Tlelo-Cuautle E, Siarry P (eds) (2015) Computational intelligence in analog and mixed-signal (AMS) and radio-frequency (RF) circuit design. Springer International Publishing, Cham Fakhfakh M, Tlelo-Cuautle E, Siarry P (eds) (2015) Computational intelligence in analog and mixed-signal (AMS) and radio-frequency (RF) circuit design. Springer International Publishing, Cham
13.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier, pp 454–459 Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier, pp 454–459
14.
Zurück zum Zitat Pham DT, Castellani M (2009) The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng Part C J Mech Eng Sci 223:2919–2938CrossRef Pham DT, Castellani M (2009) The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng Part C J Mech Eng Sci 223:2919–2938CrossRef
15.
Zurück zum Zitat Baronti L, Castellani M, Pham DT (2020) An analysis of the search mechanisms of the bees algorithm. Swarm Evol Comput 59:100746CrossRef Baronti L, Castellani M, Pham DT (2020) An analysis of the search mechanisms of the bees algorithm. Swarm Evol Comput 59:100746CrossRef
16.
Zurück zum Zitat Pham DT, Baronti L, Zhang B, Castellani M (2018) Optimisation of engineering systems with the bees algorithm. Int J Artif Life Res 8:1–15CrossRef Pham DT, Baronti L, Zhang B, Castellani M (2018) Optimisation of engineering systems with the bees algorithm. Int J Artif Life Res 8:1–15CrossRef
19.
Zurück zum Zitat Kahng S, Khattak MK, Kim H-S, Oh S-H, Kim H-S (2015) A PSO-optimized, compact UWB bandpass filter suppressing the WLAN and the spurious harmonics. In: 2015 Asia-Pacific microwave conference (APMC). IEEE, pp 1–4 Kahng S, Khattak MK, Kim H-S, Oh S-H, Kim H-S (2015) A PSO-optimized, compact UWB bandpass filter suppressing the WLAN and the spurious harmonics. In: 2015 Asia-Pacific microwave conference (APMC). IEEE, pp 1–4
23.
Zurück zum Zitat Ciccazzo A, Di Pillo G, Latorre V (2015) A SVM surrogate model-based method for parametric yield optimization. IEEE Trans. Comput. Des Integr Circuits Syst 35:1224–1228 Ciccazzo A, Di Pillo G, Latorre V (2015) A SVM surrogate model-based method for parametric yield optimization. IEEE Trans. Comput. Des Integr Circuits Syst 35:1224–1228
24.
Zurück zum Zitat Lal A, Datta B (2018) Development and implementation of support vector machine regression surrogate models for predicting groundwater pumping-induced saltwater intrusion into coastal aquifers. Water Resour Manag 32:2405–2419CrossRef Lal A, Datta B (2018) Development and implementation of support vector machine regression surrogate models for predicting groundwater pumping-induced saltwater intrusion into coastal aquifers. Water Resour Manag 32:2405–2419CrossRef
26.
Zurück zum Zitat Dong J, Li Y, Wang M (2019) Fast multi-objective antenna optimization based on RBF neural network surrogate model optimized by improved PSO algorithm. Appl Sci 9:2589CrossRef Dong J, Li Y, Wang M (2019) Fast multi-objective antenna optimization based on RBF neural network surrogate model optimized by improved PSO algorithm. Appl Sci 9:2589CrossRef
27.
Zurück zum Zitat Sun G, Wang S (2019) A review of the artificial neural network surrogate modeling in aerodynamic design. Proc Inst Mech Eng Part G J Aerosp Eng 233:5863–5872 Sun G, Wang S (2019) A review of the artificial neural network surrogate modeling in aerodynamic design. Proc Inst Mech Eng Part G J Aerosp Eng 233:5863–5872
28.
Zurück zum Zitat Koziel S, Sigurðsson ATA, Vidarsson FV (2018) Accurate design-oriented modeling of compact microwave couplers in constrained domains. In: 2018 IEEE MTT-S International conference on numerical electromagnetic and multiphysics modeling and optimization NEMO 2018, pp 1–3. https://doi.org/10.1109/NEMO.2018.8503172 Koziel S, Sigurðsson ATA, Vidarsson FV (2018) Accurate design-oriented modeling of compact microwave couplers in constrained domains. In: 2018 IEEE MTT-S International conference on numerical electromagnetic and multiphysics modeling and optimization NEMO 2018, pp 1–3. https://​doi.​org/​10.​1109/​NEMO.​2018.​8503172
29.
Zurück zum Zitat Torun HM, Hejase JA, Tang J, Beckert WD, Swaminathan M (2018) Bayesian active learning for uncertainty quantification of high speed channel signaling. EPEPS 2018 - IEEE 27th Conference on electrical performance of electronic packaging and systems, pp 311–313. https://doi.org/10.1109/EPEPS.2018.8534251 Torun HM, Hejase JA, Tang J, Beckert WD, Swaminathan M (2018) Bayesian active learning for uncertainty quantification of high speed channel signaling. EPEPS 2018 - IEEE 27th Conference on electrical performance of electronic packaging and systems, pp 311–313. https://​doi.​org/​10.​1109/​EPEPS.​2018.​8534251
30.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25
31.
Zurück zum Zitat Castellani M (2013) Evolutionary generation of neural network classifiers—an empirical comparison. Neurocomputing 99:214–229CrossRef Castellani M (2013) Evolutionary generation of neural network classifiers—an empirical comparison. Neurocomputing 99:214–229CrossRef
32.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNet Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNet
33.
Zurück zum Zitat Feng X, Wu QMJ, Yang Y, Cao L (2020) An autuencoder-based data augmentation strategy for generalization improvement of dcnns. Neurocomputing 402:283–297CrossRef Feng X, Wu QMJ, Yang Y, Cao L (2020) An autuencoder-based data augmentation strategy for generalization improvement of dcnns. Neurocomputing 402:283–297CrossRef
37.
38.
Zurück zum Zitat Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. Springer Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. Springer
39.
Zurück zum Zitat Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005005:2005 Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005005:2005
40.
Zurück zum Zitat MacFarland TW, Yates JM (2016) Mann—whitney u test. In: Introduction to nonparametric statistics for the biological sciences using R. Springer, pp 103–132 MacFarland TW, Yates JM (2016) Mann—whitney u test. In: Introduction to nonparametric statistics for the biological sciences using R. Springer, pp 103–132
41.
Zurück zum Zitat STudio CSTM (2014) CST Studio Suite 2011. Comput Simul Technol AG STudio CSTM (2014) CST Studio Suite 2011. Comput Simul Technol AG
Metadaten
Titel
Surrogate Model-Assisted Bees Algorithm for Global Optimisation of Microwave Filters
verfasst von
Feiying Lan
Lu Qian
Marco Castellani
Yi Wang
D. T. Pham
Yongjing Wang
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.