Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.02.2017 | Ausgabe 2/2018

Artificial Intelligence Review 2/2018

Suspicious human activity recognition: a review

Zeitschrift:
Artificial Intelligence Review > Ausgabe 2/2018
Autoren:
Rajesh Kumar Tripathi, Anand Singh Jalal, Subhash Chand Agrawal

Abstract

Suspicious human activity recognition from surveillance video is an active research area of image processing and computer vision. Through the visual surveillance, human activities can be monitored in sensitive and public areas such as bus stations, railway stations, airports, banks, shopping malls, school and colleges, parking lots, roads, etc. to prevent terrorism, theft, accidents and illegal parking, vandalism, fighting, chain snatching, crime and other suspicious activities. It is very difficult to watch public places continuously, therefore an intelligent video surveillance is required that can monitor the human activities in real-time and categorize them as usual and unusual activities; and can generate an alert. Recent decade witnessed a good number of publications in the field of visual surveillance to recognize the abnormal activities. Furthermore, a few surveys can be seen in the literature for the different abnormal activities recognition; but none of them have addressed different abnormal activities in a review. In this paper, we present the state-of-the-art which demonstrates the overall progress of suspicious activity recognition from the surveillance videos in the last decade. We include a brief introduction of the suspicious human activity recognition with its issues and challenges. This paper consists of six abnormal activities such as abandoned object detection, theft detection, fall detection, accidents and illegal parking detection on road, violence activity detection, and fire detection. In general, we have discussed all the steps those have been followed to recognize the human activity from the surveillance videos in the literature; such as foreground object extraction, object detection based on tracking or non-tracking methods, feature extraction, classification; activity analysis and recognition. The objective of this paper is to provide the literature review of six different suspicious activity recognition systems with its general framework to the researchers of this field.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2018

Artificial Intelligence Review 2/2018Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise