Skip to main content

2022 | OriginalPaper | Buchkapitel

Sustainability Implications of Additive Manufacturing

verfasst von : Nabila Afif Mohmd Arifin, Muhamad Zameri Mat Saman, Safian Sharif, Nor Hasrul Akhmal Ngadiman

Erschienen in: Human-Centered Technology for a Better Tomorrow

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing is the industrial production name for 3D printing, which is one of the advanced technologies in the fourth industrial revolution. 3D printing involves the production of a 3D product using a layer by layer technique. Complex structures can be produced through AM which was no possible using conventional method as it has the potential to assemble parts, consequently minimizing the production process. In addition, through the AM process, less waste is generated during manufacturing and lightweight components can be produced which makes it beneficial in terms of materials and costs. Therefore, additive manufacturing is seen to have an impact on sustainability. This paper will review the implications of AM on sustainability, which includes the environmental, economic and social aspects. Clear understanding of sustainability impacts of AM is crucial in order to assist companies and researchers to make the best decisions before switching to AM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stock T, Seliger G (2016) Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP 40:536–541 Stock T, Seliger G (2016) Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP 40:536–541
3.
Zurück zum Zitat Despeisse M, Yang M, Evans S, Ford S, Minshall T (2017) Sustainable value roadmapping framework for additive manufacturing. Procedia CIRP 61:594–599CrossRef Despeisse M, Yang M, Evans S, Ford S, Minshall T (2017) Sustainable value roadmapping framework for additive manufacturing. Procedia CIRP 61:594–599CrossRef
4.
Zurück zum Zitat Ribeiro I, Matos F, Jacinto C, Salman H, Cardeal G, Carvalho H, Godina R, Peças P (2020) Framework for life cycle sustainability assessment of additive manufacturing. Sustainability 12(3) Ribeiro I, Matos F, Jacinto C, Salman H, Cardeal G, Carvalho H, Godina R, Peças P (2020) Framework for life cycle sustainability assessment of additive manufacturing. Sustainability 12(3)
5.
Zurück zum Zitat Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRef Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRef
6.
Zurück zum Zitat Gutowski T, Jiang S, Cooper D (2017) Note on the rate and energy efficiency limits for additive manufacturing. J Ind Ecol 21:1–11CrossRef Gutowski T, Jiang S, Cooper D (2017) Note on the rate and energy efficiency limits for additive manufacturing. J Ind Ecol 21:1–11CrossRef
7.
Zurück zum Zitat Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies, 2nd edn. Springer, Berlin Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies, 2nd edn. Springer, Berlin
8.
Zurück zum Zitat Wohler T (2012) Wohler report. 3D printing and additive manufacturing state of the industry Wohler T (2012) Wohler report. 3D printing and additive manufacturing state of the industry
9.
Zurück zum Zitat Huang SH, Liu P, Mokasdar A (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 1191–1203 Huang SH, Liu P, Mokasdar A (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 1191–1203
10.
Zurück zum Zitat Rejeski D, Zhao F, Huang Y (2018) Research needs and recommendations on environmental implications of additive manufacturing. Addit Manuf 19:21–28 Rejeski D, Zhao F, Huang Y (2018) Research needs and recommendations on environmental implications of additive manufacturing. Addit Manuf 19:21–28
11.
Zurück zum Zitat Verhoef LA, Budde BW, Chockalingam C, García Nodar B, van Wijk AJM (2018) The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. Energy Policy 112:349–360CrossRef Verhoef LA, Budde BW, Chockalingam C, García Nodar B, van Wijk AJM (2018) The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. Energy Policy 112:349–360CrossRef
12.
Zurück zum Zitat Garcia FL, Moris VA, da S, Nunes AO, Silva DAL (2018) Environmental performance of additive manufacturing process-an overview. Rapid Prototyping J 24(7):1166–1177 Garcia FL, Moris VA, da S, Nunes AO, Silva DAL (2018) Environmental performance of additive manufacturing process-an overview. Rapid Prototyping J 24(7):1166–1177
13.
Zurück zum Zitat Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 1(12):1511–1519CrossRef Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 1(12):1511–1519CrossRef
14.
Zurück zum Zitat Kellens K, Renaldi R, Dewulf W, Kruth JP, Duflou JR (2014) Environmental impact modeling of selective laser sintering processes. Rapid Prototyping J 20(6):459–470CrossRef Kellens K, Renaldi R, Dewulf W, Kruth JP, Duflou JR (2014) Environmental impact modeling of selective laser sintering processes. Rapid Prototyping J 20(6):459–470CrossRef
15.
Zurück zum Zitat Baumers M, Tuck C, Hague R, Ashcroft I, Wildman R (2010) A comparative study of metallic additive manufacturing power consumption. In: 21st annual international solid freeform fabrication symposium—an additive manufacturing conference (SFF 2010), pp 278–288 Baumers M, Tuck C, Hague R, Ashcroft I, Wildman R (2010) A comparative study of metallic additive manufacturing power consumption. In: 21st annual international solid freeform fabrication symposium—an additive manufacturing conference (SFF 2010), pp 278–288
16.
Zurück zum Zitat Bekker ACM, Verlinden JC (2018) Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. J Clean Prod 177:438–447CrossRef Bekker ACM, Verlinden JC (2018) Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. J Clean Prod 177:438–447CrossRef
17.
Zurück zum Zitat Bourhis FL, Kerbrat O, Dembinski L, Hascoet JY, Mognol P (2014) Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15:26–31CrossRef Bourhis FL, Kerbrat O, Dembinski L, Hascoet JY, Mognol P (2014) Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15:26–31CrossRef
18.
Zurück zum Zitat Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570CrossRef Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570CrossRef
19.
Zurück zum Zitat Ingarao G, Priarone PC, Deng Y, Paraskevas D (2018) Environmental modelling of aluminium based components manufacturing routes: additive manufacturing versus machining versus forming. J Clean Prod 176:261–275CrossRef Ingarao G, Priarone PC, Deng Y, Paraskevas D (2018) Environmental modelling of aluminium based components manufacturing routes: additive manufacturing versus machining versus forming. J Clean Prod 176:261–275CrossRef
20.
Zurück zum Zitat Jin M, Tang R, Ji Y, Liu F, Gao L, Huisingh D (2017) Impact of advanced manufacturing on sustainability: an overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions. J Clean Prod 161:69–74CrossRef Jin M, Tang R, Ji Y, Liu F, Gao L, Huisingh D (2017) Impact of advanced manufacturing on sustainability: an overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions. J Clean Prod 161:69–74CrossRef
21.
Zurück zum Zitat Ma J, Harstvedt JD, Dunaway D, Bian L, Jaradat R (2018) An exploratory investigation of additively manufactured product life cycle sustainability assessment. J Clean Prod 192:55–70CrossRef Ma J, Harstvedt JD, Dunaway D, Bian L, Jaradat R (2018) An exploratory investigation of additively manufactured product life cycle sustainability assessment. J Clean Prod 192:55–70CrossRef
22.
Zurück zum Zitat Malshe H, Nagarajan H, Pan Y, Haapala K (2015) Profile of sustainability in additive manufacturing and environmental assessment of a novel stereolithography process. In: ASME international manufacturing science and engineering conference, pp 1–11 Malshe H, Nagarajan H, Pan Y, Haapala K (2015) Profile of sustainability in additive manufacturing and environmental assessment of a novel stereolithography process. In: ASME international manufacturing science and engineering conference, pp 1–11
23.
Zurück zum Zitat Paris H, Mokhtarian H, Museau M, Coatane E, Ituarte IF (2016) Manufacturing technology comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Ann 65:29–32 Paris H, Mokhtarian H, Museau M, Coatane E, Ituarte IF (2016) Manufacturing technology comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Ann 65:29–32
24.
Zurück zum Zitat Zhang H, Nagel JK, Al-Qas A, Gibbons E, Lee JJY (2018) Additive manufacturing with bioinspired sustainable product design: a conceptual model. Procedia Manuf 26:880–891CrossRef Zhang H, Nagel JK, Al-Qas A, Gibbons E, Lee JJY (2018) Additive manufacturing with bioinspired sustainable product design: a conceptual model. Procedia Manuf 26:880–891CrossRef
25.
Zurück zum Zitat Balogun VA, Kirkwood ND, Mativenga PT (2014) Direct electrical energy demand in fused deposition modelling. Procedia CIRP 15:38–43CrossRef Balogun VA, Kirkwood ND, Mativenga PT (2014) Direct electrical energy demand in fused deposition modelling. Procedia CIRP 15:38–43CrossRef
26.
Zurück zum Zitat Lyons R, Newell A, Ghadimi P, Papakostas N (2020) Environmental impacts of conventional and additive manufacturing for the production of Ti-6Al-4V knee implant: a life cycle approach. Int J Adv Manuf Technol Lyons R, Newell A, Ghadimi P, Papakostas N (2020) Environmental impacts of conventional and additive manufacturing for the production of Ti-6Al-4V knee implant: a life cycle approach. Int J Adv Manuf Technol
27.
Zurück zum Zitat Hodonou C, Kerbrat O, Balazinski M, Brochu M (2020) Process selection charts based on economy and environment: subtractive or additive manufacturing to produce structural components of aircraft. Int J Interact Des Manuf 14(3):861–873CrossRef Hodonou C, Kerbrat O, Balazinski M, Brochu M (2020) Process selection charts based on economy and environment: subtractive or additive manufacturing to produce structural components of aircraft. Int J Interact Des Manuf 14(3):861–873CrossRef
28.
Zurück zum Zitat Tagliaferri V, Trovalusci F, Guarino S, Venettacci S (2019) Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials 12(24) Tagliaferri V, Trovalusci F, Guarino S, Venettacci S (2019) Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials 12(24)
29.
Zurück zum Zitat Böckin D, Tillman AM (2019) Environmental assessment of additive manufacturing in the automotive industry. J Clean Prod 226:977–987CrossRef Böckin D, Tillman AM (2019) Environmental assessment of additive manufacturing in the automotive industry. J Clean Prod 226:977–987CrossRef
30.
Zurück zum Zitat Yosofi M, Kerbrat O, Mognol P (2019) Additive manufacturing processes from an environmental point of view: a new methodology for combining technical, economic, and environmental predictive models. Int J Adv Manuf Technol 102(9–12):4073–4085CrossRef Yosofi M, Kerbrat O, Mognol P (2019) Additive manufacturing processes from an environmental point of view: a new methodology for combining technical, economic, and environmental predictive models. Int J Adv Manuf Technol 102(9–12):4073–4085CrossRef
31.
Zurück zum Zitat Faludi J, Van Sice CM, Shi Y, Bower J, Brooks OMK (2019) Novel materials can radically improve whole-system environmental impacts of additive manufacturing. J Clean Prod 212:1580–1590CrossRef Faludi J, Van Sice CM, Shi Y, Bower J, Brooks OMK (2019) Novel materials can radically improve whole-system environmental impacts of additive manufacturing. J Clean Prod 212:1580–1590CrossRef
32.
Zurück zum Zitat Liu Z, Jiang Q, Ning F, Kim H, Cong W, Xu C, Zhang H (2018) Investigation of energy requirements and environmental performance for additive manufacturing processes. Sustainability 10(10):3606CrossRef Liu Z, Jiang Q, Ning F, Kim H, Cong W, Xu C, Zhang H (2018) Investigation of energy requirements and environmental performance for additive manufacturing processes. Sustainability 10(10):3606CrossRef
33.
Zurück zum Zitat Yang Y, Li L, Pan Y, Sun Z (2017) Energy consumption modeling of stereolithography-based additive manufacturing toward environmental sustainability. J Ind Ecol 21:S168–S178CrossRef Yang Y, Li L, Pan Y, Sun Z (2017) Energy consumption modeling of stereolithography-based additive manufacturing toward environmental sustainability. J Ind Ecol 21:S168–S178CrossRef
34.
Zurück zum Zitat Tang Y, Mak K, Zhao YF (2016) A framework to reduce product environmental impact through design optimization for additive manufacturing. J Clean Prod 137:1560–1572CrossRef Tang Y, Mak K, Zhao YF (2016) A framework to reduce product environmental impact through design optimization for additive manufacturing. J Clean Prod 137:1560–1572CrossRef
35.
Zurück zum Zitat Priarone PC, Pagone E, Martina F, Catalano AR, Settineri L (2020) Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Ann 69(1):37–40CrossRef Priarone PC, Pagone E, Martina F, Catalano AR, Settineri L (2020) Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Ann 69(1):37–40CrossRef
36.
Zurück zum Zitat Ron T, Levy GK, Dolev O, Leon A, Shirizly A, Aghion E (2019) Environmental behavior of low carbon steel produced by a wire arc additive manufacturing process. Metals 9(8) Ron T, Levy GK, Dolev O, Leon A, Shirizly A, Aghion E (2019) Environmental behavior of low carbon steel produced by a wire arc additive manufacturing process. Metals 9(8)
37.
Zurück zum Zitat Priarone PC, Ingarao G, Lunetto V, Di Lorenzo R, Settineri L (2018) The role of re-design for additive manufacturing on the process environmental performance. Procedia CIRP 69:124–129CrossRef Priarone PC, Ingarao G, Lunetto V, Di Lorenzo R, Settineri L (2018) The role of re-design for additive manufacturing on the process environmental performance. Procedia CIRP 69:124–129CrossRef
38.
Zurück zum Zitat Faludi J, Bayley C, Bhogal S, Iribarne M (2015) Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyping J 21(1):14–33CrossRef Faludi J, Bayley C, Bhogal S, Iribarne M (2015) Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyping J 21(1):14–33CrossRef
39.
Zurück zum Zitat Senyana L, Cormier D (2014) An environmental impact comparison of distributed and centralized manufacturing scenarios. Adv Mater Res 875–877:1449–1453CrossRef Senyana L, Cormier D (2014) An environmental impact comparison of distributed and centralized manufacturing scenarios. Adv Mater Res 875–877:1449–1453CrossRef
40.
Zurück zum Zitat Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97CrossRef Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97CrossRef
41.
Zurück zum Zitat Khorram Niaki M, Nonino F, Palombi G, Torabi SA (2019) Economic sustainability of additive manufacturing: contextual factors driving its performance in rapid prototyping. J Manuf Technol Manag 30(2):353–365CrossRef Khorram Niaki M, Nonino F, Palombi G, Torabi SA (2019) Economic sustainability of additive manufacturing: contextual factors driving its performance in rapid prototyping. J Manuf Technol Manag 30(2):353–365CrossRef
42.
Zurück zum Zitat Li Y, Linke BS, Voet H, Falk B, Schmitt R, Lam M (2017) Cost, sustainability and surface roughness quality—a comprehensive analysis of products made with personal 3D printers. CIRP J Manuf Sci Technol 16:1–11CrossRef Li Y, Linke BS, Voet H, Falk B, Schmitt R, Lam M (2017) Cost, sustainability and surface roughness quality—a comprehensive analysis of products made with personal 3D printers. CIRP J Manuf Sci Technol 16:1–11CrossRef
43.
Zurück zum Zitat Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost model for selective laser melting (SLM). Rapid Prototyping J 19(3):208–214CrossRef Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost model for selective laser melting (SLM). Rapid Prototyping J 19(3):208–214CrossRef
44.
Zurück zum Zitat Xu F, Wong YS, Loh HT (2001) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296CrossRef Xu F, Wong YS, Loh HT (2001) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296CrossRef
45.
Zurück zum Zitat Šoškić Z, Monti GL, Montanari S, Monti M, Cardu M (2019) Production cost model of the multi-jet-fusion technology. Proc Inst Mech Eng Part C J Mech Eng Sci 1–13 Šoškić Z, Monti GL, Montanari S, Monti M, Cardu M (2019) Production cost model of the multi-jet-fusion technology. Proc Inst Mech Eng Part C J Mech Eng Sci 1–13
46.
Zurück zum Zitat Lindemann C, Reiher T, Jahnke U, Koch R (2015) Towards a sustainable and economic selection of part candidates for additive manufacturing. Rapid Prototyping J 21(2):216–227CrossRef Lindemann C, Reiher T, Jahnke U, Koch R (2015) Towards a sustainable and economic selection of part candidates for additive manufacturing. Rapid Prototyping J 21(2):216–227CrossRef
47.
Zurück zum Zitat Westerweel B, Basten RJI, van Houtum GJ (2018) Traditional or additive manufacturing? Assessing component design options through lifecycle cost analysis. Eur J Oper Res 270(2):570–585MathSciNetMATHCrossRef Westerweel B, Basten RJI, van Houtum GJ (2018) Traditional or additive manufacturing? Assessing component design options through lifecycle cost analysis. Eur J Oper Res 270(2):570–585MathSciNetMATHCrossRef
48.
Zurück zum Zitat Kamps T, Lutter-Guenther M, Seidel C, Gutowski T, Reinhart G (2018) Cost and energy efficient manufacture of gears by laser beam melting. CIRP J Manuf Sci Technol 21:47–60CrossRef Kamps T, Lutter-Guenther M, Seidel C, Gutowski T, Reinhart G (2018) Cost and energy efficient manufacture of gears by laser beam melting. CIRP J Manuf Sci Technol 21:47–60CrossRef
49.
Zurück zum Zitat Laureijs RE, Roca JB, Narra SP, Montgomery C, Beuth JL, Fuchs ERH (2017) Metal additive manufacturing: cost competitive beyond low volumes. J Manuf Sci E T ASME 139:8CrossRef Laureijs RE, Roca JB, Narra SP, Montgomery C, Beuth JL, Fuchs ERH (2017) Metal additive manufacturing: cost competitive beyond low volumes. J Manuf Sci E T ASME 139:8CrossRef
50.
Zurück zum Zitat Huang R, Ulu E, Kara LB, Whitefoot KS (2017) Cost minimization in metal additive manufacturing using concurrent structure and process optimization. In: ASME 2017 international design engineering technical conference & computers and information in engineering conference computers and information in engineering conference, pp 1–10 Huang R, Ulu E, Kara LB, Whitefoot KS (2017) Cost minimization in metal additive manufacturing using concurrent structure and process optimization. In: ASME 2017 international design engineering technical conference & computers and information in engineering conference computers and information in engineering conference, pp 1–10
51.
Zurück zum Zitat Fera M, Macchiaroli R, Fruggiero F, Lambiase A (2018) A new perspective for production process analysis using additive manufacturing-complexity vs production volume. Int J Adv Manuf Technol 95(1–4):673–685CrossRef Fera M, Macchiaroli R, Fruggiero F, Lambiase A (2018) A new perspective for production process analysis using additive manufacturing-complexity vs production volume. Int J Adv Manuf Technol 95(1–4):673–685CrossRef
52.
Zurück zum Zitat Ott K, Pascher H, Sihn W (2019) Improving sustainability and cost efficiency for spare part allocation strategies by utilisation of additive manufacturing technologies. Procedia Manuf 33:123–130CrossRef Ott K, Pascher H, Sihn W (2019) Improving sustainability and cost efficiency for spare part allocation strategies by utilisation of additive manufacturing technologies. Procedia Manuf 33:123–130CrossRef
53.
Zurück zum Zitat Rudolph JP, Emmelmann C (2017) A cloud-based platform for automated order processing in additive manufacturing. Procedia CIRP 63:412–417CrossRef Rudolph JP, Emmelmann C (2017) A cloud-based platform for automated order processing in additive manufacturing. Procedia CIRP 63:412–417CrossRef
54.
Zurück zum Zitat Mai J, Zhang L, Tao F, Ren L (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83CrossRef Mai J, Zhang L, Tao F, Ren L (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83CrossRef
55.
Zurück zum Zitat Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155CrossRef Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155CrossRef
56.
Zurück zum Zitat Ruffo M, Tuck C, Hague R (2006) Cost estimation for rapid manufacturing—laser sintering production for low to medium volumes. Proc Inst Mech Eng Part B J Eng Manuf 220(9):1417–1427CrossRef Ruffo M, Tuck C, Hague R (2006) Cost estimation for rapid manufacturing—laser sintering production for low to medium volumes. Proc Inst Mech Eng Part B J Eng Manuf 220(9):1417–1427CrossRef
57.
Zurück zum Zitat Hopkinson N, Dickens P (2003) Analysis of rapid manufacturing—using layer manufacturing processes for production. Proc Inst Mech Eng C J Mech Eng Sci 217(1):31–40CrossRef Hopkinson N, Dickens P (2003) Analysis of rapid manufacturing—using layer manufacturing processes for production. Proc Inst Mech Eng C J Mech Eng Sci 217(1):31–40CrossRef
58.
Zurück zum Zitat Emelogu A, Marufuzzaman M, Thompson SM, Shamsaei N, Bian L (2016) Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis. Addit Manuf 11:97–113 Emelogu A, Marufuzzaman M, Thompson SM, Shamsaei N, Bian L (2016) Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis. Addit Manuf 11:97–113
59.
Zurück zum Zitat Lindemann C, Jahnke U, Moi M, Koch R (2012) Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing, pp 177–188 Lindemann C, Jahnke U, Moi M, Koch R (2012) Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing, pp 177–188
60.
Zurück zum Zitat Scott A, Harrison TP (2015) Additive manufacturing in an end-to-end supply chain setting. 3D Printing Additive Manuf 2(2):65–77 Scott A, Harrison TP (2015) Additive manufacturing in an end-to-end supply chain setting. 3D Printing Additive Manuf 2(2):65–77
61.
Zurück zum Zitat Khajavi SH, Baumers M, Holmström J, Özcan E, Atkin J, Jackson W, Li W (2018) To kit or not to kit: analysing the value of model-based kitting for additive manufacturing. Comput Ind 98:100–117CrossRef Khajavi SH, Baumers M, Holmström J, Özcan E, Atkin J, Jackson W, Li W (2018) To kit or not to kit: analysing the value of model-based kitting for additive manufacturing. Comput Ind 98:100–117CrossRef
62.
Zurück zum Zitat Urbanic RJ, Saqib SM (2019) A manufacturing cost analysis framework to evaluate machining and fused filament fabrication additive manufacturing approaches. Int J Adv Manuf Technol 102(9–12):3091–3108CrossRef Urbanic RJ, Saqib SM (2019) A manufacturing cost analysis framework to evaluate machining and fused filament fabrication additive manufacturing approaches. Int J Adv Manuf Technol 102(9–12):3091–3108CrossRef
63.
Zurück zum Zitat Sutherland JW, Richter JS, Hutchins MJ, Dornfeld D, Dzombak R, Mangold J, Robinson S, Hauschild MZ, Bonou A, Schönsleben P, Friemann F (2016) The role of manufacturing in affecting the social dimension of sustainability. CIRP Ann Manuf Technol 65(2):689–712CrossRef Sutherland JW, Richter JS, Hutchins MJ, Dornfeld D, Dzombak R, Mangold J, Robinson S, Hauschild MZ, Bonou A, Schönsleben P, Friemann F (2016) The role of manufacturing in affecting the social dimension of sustainability. CIRP Ann Manuf Technol 65(2):689–712CrossRef
64.
Zurück zum Zitat Benoît C, Mazijn B (2013) United Nations Environment Programme. CIRAIG, Interuniversity Research Centre for the Life Cycle of Products, P. and S., & Canadian Electronic Library. Guidelines for social life cycle assessment of products (2013) Benoît C, Mazijn B (2013) United Nations Environment Programme. CIRAIG, Interuniversity Research Centre for the Life Cycle of Products, P. and S., & Canadian Electronic Library. Guidelines for social life cycle assessment of products (2013)
65.
Zurück zum Zitat Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625CrossRef Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625CrossRef
66.
Zurück zum Zitat Kondoh S, Tateno T, Kishita Y, Komoto H (2017) The potential of additive manufacturing technology for realizing a sustainable society, pp 475–486 Kondoh S, Tateno T, Kishita Y, Komoto H (2017) The potential of additive manufacturing technology for realizing a sustainable society, pp 475–486
67.
Zurück zum Zitat Matos F, Jacinto C (2018) Additive manufacturing technology: mapping social impacts. J Manuf Technol Manag 30(1):70–97CrossRef Matos F, Jacinto C (2018) Additive manufacturing technology: mapping social impacts. J Manuf Technol Manag 30(1):70–97CrossRef
Metadaten
Titel
Sustainability Implications of Additive Manufacturing
verfasst von
Nabila Afif Mohmd Arifin
Muhamad Zameri Mat Saman
Safian Sharif
Nor Hasrul Akhmal Ngadiman
Copyright-Jahr
2022
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-4115-2_35

Neuer Inhalt