Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Sustainable and Very-Low-Temperature Wet-Chemistry Routes for the Synthesis of Crystalline Inorganic Nanostructures

verfasst von : Silvia Gross

Erschienen in: Green Processes for Nanotechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, selected low (T < 200 °C)-temperature wet-chemistry routes for the synthesis of crystalline inorganic compounds are described and reviewed, outlining their main features and application fields. In particular, the chosen approaches are hydro/solvothermal synthesis, template-assisted approaches, nucleation and growth in solution/suspension, microemulsion and miniemulsion. The described synthetic strategies have been selected since all of them, once optimized the experimental set-up and conditions, comply with the paradigms of green chemistry, being based on low (or even room) temperature of processing, on low chemical consumption (they are all bottom-up approach), in many cases having water as solvent or dispersing medium. In this regard, environmentally friendly methodologies for the controlled synthesis of inorganic nanostructures represent a stimulating research playground, since the use of environmentally friendly, green, cost-effective and technically sound approaches to inorganic crystalline nanostructures does not necessarily imply to sacrifice the sample crystallinity, purity, and monodispersity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anastas PT, Warner JC (2000) Green chemistry theory and practice. Oxford University Press, New York Anastas PT, Warner JC (2000) Green chemistry theory and practice. Oxford University Press, New York
2.
Zurück zum Zitat Mao Y, Park T-J et al (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3(7):1122–1139 Mao Y, Park T-J et al (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3(7):1122–1139
3.
Zurück zum Zitat Cushing BL, Kolesnichenko VL et al (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946 Cushing BL, Kolesnichenko VL et al (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946
4.
Zurück zum Zitat Dahl JA, Maddux BLS et al (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269 Dahl JA, Maddux BLS et al (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269
5.
Zurück zum Zitat Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355–2365 Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355–2365
6.
Zurück zum Zitat Mitzi DB (2009) Solution processing of inorganic materials. Wiley, Hoboken Mitzi DB (2009) Solution processing of inorganic materials. Wiley, Hoboken
7.
Zurück zum Zitat Schubert U, Hüsing N et al (2008) Materials syntheses. Springer, Vienna Schubert U, Hüsing N et al (2008) Materials syntheses. Springer, Vienna
8.
Zurück zum Zitat Caruso F (ed) (2004) Colloids and colloid assemblies—synthesis, modification, organization and utilization of colloid particles, 1st edn. Wiley-VCH, Weinheim Caruso F (ed) (2004) Colloids and colloid assemblies—synthesis, modification, organization and utilization of colloid particles, 1st edn. Wiley-VCH, Weinheim
9.
Zurück zum Zitat Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
10.
Zurück zum Zitat Schubert U, Hüsing N (2005) Synthesis of inorganic materials, 2nd edn. Wiley-VCH, Weinheim Schubert U, Hüsing N (2005) Synthesis of inorganic materials, 2nd edn. Wiley-VCH, Weinheim
11.
Zurück zum Zitat Glaister RM, Allen NA et al (1965) Comparison of methods for preparing fine ferrite powders. Proc Brit Ceram Soc No 3:67–80 Glaister RM, Allen NA et al (1965) Comparison of methods for preparing fine ferrite powders. Proc Brit Ceram Soc No 3:67–80
12.
Zurück zum Zitat Sritharan T, Boey FYC et al (2007) Synthesis of complex ceramics by mechanochemical activation. J Mater Process Technol 192–193:255–258 Sritharan T, Boey FYC et al (2007) Synthesis of complex ceramics by mechanochemical activation. J Mater Process Technol 192–193:255–258
13.
Zurück zum Zitat Lazarevic ZZ, Jovalekic C et al (2012) Preparation and characterization of nano ferrites. Acta Phys Pol 121:682–686 Lazarevic ZZ, Jovalekic C et al (2012) Preparation and characterization of nano ferrites. Acta Phys Pol 121:682–686
14.
Zurück zum Zitat Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents—synthesis, formation assembly and applications. Springer, New York Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents—synthesis, formation assembly and applications. Springer, New York
15.
Zurück zum Zitat Muñoz-Espí R, Mastai Y et al (2013) Colloidal systems for crystallization processes from liquid phase (invited highlight). CrystEngComm 15(12):2175–2191 Muñoz-Espí R, Mastai Y et al (2013) Colloidal systems for crystallization processes from liquid phase (invited highlight). CrystEngComm 15(12):2175–2191
16.
Zurück zum Zitat Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41 Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41
17.
Zurück zum Zitat Grzelczak M, Perez-Juste J et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791 Grzelczak M, Perez-Juste J et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791
18.
Zurück zum Zitat Abalde-Cela S, Aldeanueva-Potel P et al (2010) Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7:S435–S450 Abalde-Cela S, Aldeanueva-Potel P et al (2010) Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7:S435–S450
19.
Zurück zum Zitat Alvarez-Puebla RA, Liz-Marzan LM (2010) Environmental applications of plasmon assisted Raman scattering. Energy Environ Sci 3(8):1011–1017 Alvarez-Puebla RA, Liz-Marzan LM (2010) Environmental applications of plasmon assisted Raman scattering. Energy Environ Sci 3(8):1011–1017
20.
Zurück zum Zitat Wang YX, Yun WB et al (2003) Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424(6944):50–53 Wang YX, Yun WB et al (2003) Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424(6944):50–53
21.
Zurück zum Zitat Modeshia DR, Walton RI (2010) Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem Soc Rev 39(11):4303–4325 Modeshia DR, Walton RI (2010) Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem Soc Rev 39(11):4303–4325
22.
Zurück zum Zitat Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4(12):840–848 Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4(12):840–848
23.
Zurück zum Zitat Romo-Herrera JM, Alvarez-Puebla RA et al (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315 Romo-Herrera JM, Alvarez-Puebla RA et al (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315
24.
Zurück zum Zitat Calvert P, Rieke P (1996) Biomimetic mineralization in and on polymers. Chem Mater 8(8):1715–1727 Calvert P, Rieke P (1996) Biomimetic mineralization in and on polymers. Chem Mater 8(8):1715–1727
25.
Zurück zum Zitat Livage J, Sanchez C (2005) Towards a soft and biomimetic nanochemistry. Actual Chim 290–291:72–76 Livage J, Sanchez C (2005) Towards a soft and biomimetic nanochemistry. Actual Chim 290–291:72–76
26.
Zurück zum Zitat Sanchez C, Arribart H et al (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288 Sanchez C, Arribart H et al (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288
27.
Zurück zum Zitat Andre R, Tahir MN et al (2012) Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials. FEBS J 279:1737–1749 Andre R, Tahir MN et al (2012) Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials. FEBS J 279:1737–1749
28.
Zurück zum Zitat Ma T-Y, Yuan Z-Y (2012) Bioinspired approach to synthesizing hierarchical porous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Ma T-Y, Yuan Z-Y (2012) Bioinspired approach to synthesizing hierarchical porous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
29.
Zurück zum Zitat Lepoint T, Lepoint-Mullie F et al (1999) Single bubble sonochemistry. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, Netherlands, pp 285–290 Lepoint T, Lepoint-Mullie F et al (1999) Single bubble sonochemistry. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, Netherlands, pp 285–290
30.
Zurück zum Zitat Kumar RV, Palchik O et al (2002) Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrason Sonochem 9(2):65–70 Kumar RV, Palchik O et al (2002) Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrason Sonochem 9(2):65–70
31.
Zurück zum Zitat Wang H, Zhang J-R et al (2002) Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater Lett 55(4):253–258 Wang H, Zhang J-R et al (2002) Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater Lett 55(4):253–258
32.
Zurück zum Zitat Cansell F, Chevalier B et al (1999) Supercritical fluid processing: a new route for materials synthesis. J Mater Chem 9:67–75 Cansell F, Chevalier B et al (1999) Supercritical fluid processing: a new route for materials synthesis. J Mater Chem 9:67–75
33.
Zurück zum Zitat Aimable A, Muhr H et al (2009) Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: towards a better control of the process. Powder Technol 190:99–106 Aimable A, Muhr H et al (2009) Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: towards a better control of the process. Powder Technol 190:99–106
34.
Zurück zum Zitat Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817 Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817
35.
Zurück zum Zitat Kuznestov VA (1973) Hydrothermal method for the growth of crystals. Sov Phys Crystallogr 17(4):775–804 Kuznestov VA (1973) Hydrothermal method for the growth of crystals. Sov Phys Crystallogr 17(4):775–804
36.
Zurück zum Zitat Labachev AN (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York Labachev AN (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York
37.
Zurück zum Zitat Francis RJ, O’Hare D (1998) The kinetics and mechanisms of the crystallisation of microporous materials J Chem Soc Dalton Trans 19:3133–3148 Francis RJ, O’Hare D (1998) The kinetics and mechanisms of the crystallisation of microporous materials J Chem Soc Dalton Trans 19:3133–3148
38.
Zurück zum Zitat Rickard DT, Wickman FE (1981) Chemistry and geochemistry of solutions at high temperature and pressure. Pergamon, New York Rickard DT, Wickman FE (1981) Chemistry and geochemistry of solutions at high temperature and pressure. Pergamon, New York
39.
Zurück zum Zitat Laudise RA (1987) Hydrothermal crystal growth—some recent results. In: Dryburgh PM, Cockayne B, Barraclough KG (eds) Advanced crystal growth. Prentice Hall, New York, pp 267–286 Laudise RA (1987) Hydrothermal crystal growth—some recent results. In: Dryburgh PM, Cockayne B, Barraclough KG (eds) Advanced crystal growth. Prentice Hall, New York, pp 267–286
40.
Zurück zum Zitat Whittingham MS, Guo J-D et al (1995) The hydrothermal synthesis of new oxide materials. Solid State Ion 75:257–268 Whittingham MS, Guo J-D et al (1995) The hydrothermal synthesis of new oxide materials. Solid State Ion 75:257–268
41.
Zurück zum Zitat Whittingham MS (1996) Hydrothermal synthesis of transition metal oxides under mild conditions. Curr Opin Solid State Mater Sci 1(2):227–232 Whittingham MS (1996) Hydrothermal synthesis of transition metal oxides under mild conditions. Curr Opin Solid State Mater Sci 1(2):227–232
42.
Zurück zum Zitat Segal D (1997) Chemical synthesis of ceramic materials. J Mater Chem 7:1297–1305 Segal D (1997) Chemical synthesis of ceramic materials. J Mater Chem 7:1297–1305
43.
Zurück zum Zitat Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460 Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460
44.
Zurück zum Zitat Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—a technology for crystal growth and materials processing. Noyes, Park Ridge Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—a technology for crystal growth and materials processing. Noyes, Park Ridge
45.
Zurück zum Zitat Feng S, Xu R (2001) New materials in hydrothermal synthesis. Acc Chem Res 34(3):239–247 Feng S, Xu R (2001) New materials in hydrothermal synthesis. Acc Chem Res 34(3):239–247
46.
Zurück zum Zitat Yu S-H (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109:S65–S75 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.) Yu S-H (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109:S65–S75 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
47.
Zurück zum Zitat Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82(1–2):1–78 Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82(1–2):1–78
48.
Zurück zum Zitat Sheets WC, Mugnier E et al (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18(1):7–20 Sheets WC, Mugnier E et al (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18(1):7–20
49.
Zurück zum Zitat Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170 Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170
50.
Zurück zum Zitat Querejeta A, Varela A et al (2009) Hydrothermal synthesis: a suitable route to elaborate nanomanganites. Chem Mater 21(9):1898–1905 Querejeta A, Varela A et al (2009) Hydrothermal synthesis: a suitable route to elaborate nanomanganites. Chem Mater 21(9):1898–1905
51.
Zurück zum Zitat Shi W, Song S et al (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42(13):5714–5743 Shi W, Song S et al (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42(13):5714–5743
52.
Zurück zum Zitat Ehrentraut D, Sato H et al (2006) Solvothermal growth of ZnO. Prog Cryst Growth Ch 52(4):280–335 Ehrentraut D, Sato H et al (2006) Solvothermal growth of ZnO. Prog Cryst Growth Ch 52(4):280–335
53.
Zurück zum Zitat Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(1):013001MathSciNet Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(1):013001MathSciNet
54.
Zurück zum Zitat Chen X, Fan H et al (2005) Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route. J Cryst Growth 284:434–439 Chen X, Fan H et al (2005) Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route. J Cryst Growth 284:434–439
55.
Zurück zum Zitat Liu N, Chen X et al (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51 Liu N, Chen X et al (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51
56.
Zurück zum Zitat Mai H-X, Sun L-D et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109(51):24380–24385 Mai H-X, Sun L-D et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109(51):24380–24385
57.
Zurück zum Zitat Zhang J, Liu S et al (2011) A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H2-production activity. J Mater Chem 21(38):14655–14662 Zhang J, Liu S et al (2011) A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H2-production activity. J Mater Chem 21(38):14655–14662
58.
Zurück zum Zitat Liu S, Lu X et al (2013) Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-Ion batteries. ACS Appl Mater Interfaces 5(5):1588–1595 Liu S, Lu X et al (2013) Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-Ion batteries. ACS Appl Mater Interfaces 5(5):1588–1595
59.
Zurück zum Zitat Zhang H, Wei B et al (2013) Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity. Appl Surf Sci 270:133–138 Zhang H, Wei B et al (2013) Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity. Appl Surf Sci 270:133–138
60.
Zurück zum Zitat Zhang Y-P, Liu W et al (2014) Morphology–structure diversity of ZnS nanostructures and their optical properties. Rare Metals 33(1):1–15 Zhang Y-P, Liu W et al (2014) Morphology–structure diversity of ZnS nanostructures and their optical properties. Rare Metals 33(1):1–15
61.
Zurück zum Zitat Weiß Ö, Ihlein G et al (2000) Synthesis of millimeter-sized perfect AlPO4-5 crystals. Micropor Mesopor Mater 35–36:617–620 Weiß Ö, Ihlein G et al (2000) Synthesis of millimeter-sized perfect AlPO4-5 crystals. Micropor Mesopor Mater 35–36:617–620
62.
Zurück zum Zitat Baruwati B, Nadagouda MN et al (2008) Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J Phys Chem C 112:18399–18404 Baruwati B, Nadagouda MN et al (2008) Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J Phys Chem C 112:18399–18404
63.
Zurück zum Zitat Lorentzou S, Zygogianni A et al (2009) Advanced synthesis of nanostructured materials for environmental applications. J Alloys Compd 483(1–2):302–305 Lorentzou S, Zygogianni A et al (2009) Advanced synthesis of nanostructured materials for environmental applications. J Alloys Compd 483(1–2):302–305
64.
Zurück zum Zitat Makovec D, Kodre A et al (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158 Makovec D, Kodre A et al (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158
65.
Zurück zum Zitat Goh SC, Chia CH et al (2010) Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater Chem Phys 120(1):31–35 Goh SC, Chia CH et al (2010) Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater Chem Phys 120(1):31–35
66.
Zurück zum Zitat Diodati S (2013) Sintesi e caratterizzazione di ferriti nanostrutturate (Synthesis and characterisation of nanostructured ferrites). Ph.D. thesis, Scuola di Dottorato in Scienze Molecolari [Scienze Chimiche], University of Padova, Italy Diodati S (2013) Sintesi e caratterizzazione di ferriti nanostrutturate (Synthesis and characterisation of nanostructured ferrites). Ph.D. thesis, Scuola di Dottorato in Scienze Molecolari [Scienze Chimiche], University of Padova, Italy
67.
Zurück zum Zitat Diodati S, Pandolfo L et al (2014) Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res 7(7):1027–1042 Diodati S, Pandolfo L et al (2014) Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res 7(7):1027–1042
68.
Zurück zum Zitat Chen L, Shen Y et al (2009) Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters. Mater Lett 63:1099–1101 Chen L, Shen Y et al (2009) Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters. Mater Lett 63:1099–1101
69.
Zurück zum Zitat Ma Z, Zhou B et al (2013) Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. Front Environ Sci Eng 7(3):341–355 Ma Z, Zhou B et al (2013) Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. Front Environ Sci Eng 7(3):341–355
70.
Zurück zum Zitat Gyergyek S, Drofenik M et al (2012) Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater Chem Phys 133(1):515–522 Gyergyek S, Drofenik M et al (2012) Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater Chem Phys 133(1):515–522
71.
Zurück zum Zitat Holden A, Singer P (1971) Crystals and crystal growing. Anchor Books Doubleday & Company Inc., Garden City, New York Holden A, Singer P (1971) Crystals and crystal growing. Anchor Books Doubleday & Company Inc., Garden City, New York
72.
Zurück zum Zitat Ferey G (2000) Building units design and scale chemistry. J Solid State Chem 152:37–48 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.) Ferey G (2000) Building units design and scale chemistry. J Solid State Chem 152:37–48 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
73.
Zurück zum Zitat Ferey G (2000) The zeolites. Recherche: 72 Ferey G (2000) The zeolites. Recherche: 72
74.
Zurück zum Zitat Altmaier S, Behrens P (2003) Modification of ordered mesostructured materials during synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Altmaier S, Behrens P (2003) Modification of ordered mesostructured materials during synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
75.
Zurück zum Zitat Lide DR (2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton Lide DR (2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton
76.
Zurück zum Zitat Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10(1–2):20–40 Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10(1–2):20–40
77.
Zurück zum Zitat MacLaren I, Ponton CB (2000) A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J Eur Ceram Soc 20:1267–1275 MacLaren I, Ponton CB (2000) A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J Eur Ceram Soc 20:1267–1275
78.
Zurück zum Zitat Bacha E, Deniard P et al (2011) An inexpensive and efficient method for the synthesis of BTO and STO at temperatures lower than 200 °C. Thin Solid Films 519(17):5816–5819 Bacha E, Deniard P et al (2011) An inexpensive and efficient method for the synthesis of BTO and STO at temperatures lower than 200 °C. Thin Solid Films 519(17):5816–5819
79.
Zurück zum Zitat Labachev AN (1971) Hydrodrothermal synthesis of crystals. Nauka, Moscow Labachev AN (1971) Hydrodrothermal synthesis of crystals. Nauka, Moscow
80.
Zurück zum Zitat Cölfen H, Antonietti M et al (2008) Mesocrystals and nonclassical crystallization. Wiley, New York Cölfen H, Antonietti M et al (2008) Mesocrystals and nonclassical crystallization. Wiley, New York
81.
Zurück zum Zitat Cheng H, Ma J et al (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7(4):663–671 Cheng H, Ma J et al (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7(4):663–671
82.
Zurück zum Zitat Gopalakrishnan J (1995) Chimie Douce approaches to the synthesis of metastable oxide materials. Chem Mater 7(7):1265–1275 Gopalakrishnan J (1995) Chimie Douce approaches to the synthesis of metastable oxide materials. Chem Mater 7(7):1265–1275
83.
Zurück zum Zitat Mao Y, Banerjee S et al (2003) Hydrothermal synthesis of perovskite nanotubes. Chem Commun 3:408–409 Mao Y, Banerjee S et al (2003) Hydrothermal synthesis of perovskite nanotubes. Chem Commun 3:408–409
84.
Zurück zum Zitat Burda C, Chen X et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102 Burda C, Chen X et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102
85.
Zurück zum Zitat Antoine C (1888) Tensions des vapeurs; vouvelle relation entre les tensions et les températures. C R Acad Sci 107:681–684 Antoine C (1888) Tensions des vapeurs; vouvelle relation entre les tensions et les températures. C R Acad Sci 107:681–684
86.
Zurück zum Zitat Lide DR (2009) CRC handbook of chemistry and physics (Internet version), 89th edn. CRC Press/Taylor and Francis, Boca Raton Lide DR (2009) CRC handbook of chemistry and physics (Internet version), 89th edn. CRC Press/Taylor and Francis, Boca Raton
87.
Zurück zum Zitat Rajamathi M, Seshadri R (2002) Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr Opin Solid State Mater Sci 6:337–345 Rajamathi M, Seshadri R (2002) Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr Opin Solid State Mater Sci 6:337–345
88.
Zurück zum Zitat Tighe CJ, Gruar RI et al (2012) Investigation of counter-current mixing in a continuous hydrothermal flow reactor. J Supercrit Fluids 62:165–172 Tighe CJ, Gruar RI et al (2012) Investigation of counter-current mixing in a continuous hydrothermal flow reactor. J Supercrit Fluids 62:165–172
89.
Zurück zum Zitat Gimeno-Fabra M, Dunne P et al (2013) Continuous flow synthesis of tungsten oxide (WO3) nanoplates from tungsten (VI) ethoxide. Chem Eng J 226:22–29 Gimeno-Fabra M, Dunne P et al (2013) Continuous flow synthesis of tungsten oxide (WO3) nanoplates from tungsten (VI) ethoxide. Chem Eng J 226:22–29
90.
Zurück zum Zitat Wang Q, Tang SVY et al (2013) Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor. Nanoscale 5(1):114–117 Wang Q, Tang SVY et al (2013) Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor. Nanoscale 5(1):114–117
91.
Zurück zum Zitat Makgwane PR, Ray SS (2014) Synthesis of nanomaterials by continuous-flow microfluidics: a review. J Nanosci Nanotechnol 14(2):1338–1363 Makgwane PR, Ray SS (2014) Synthesis of nanomaterials by continuous-flow microfluidics: a review. J Nanosci Nanotechnol 14(2):1338–1363
92.
Zurück zum Zitat Middelkoop V, Tighe CJ et al (2014) Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction. J Supercrit Fluids 87:118–128 Middelkoop V, Tighe CJ et al (2014) Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction. J Supercrit Fluids 87:118–128
93.
Zurück zum Zitat Moreira ML, Mambrini GP et al (2008) Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem Mater 20(16):5381–5387 Moreira ML, Mambrini GP et al (2008) Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem Mater 20(16):5381–5387
94.
Zurück zum Zitat Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374 Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374
95.
Zurück zum Zitat Pang J, Luan Y et al (2010) Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids Surf A 360:6–12 Pang J, Luan Y et al (2010) Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids Surf A 360:6–12
96.
Zurück zum Zitat Majcher A, Wiejak J et al (2013) A novel reactor for microwave hydrothermal scale-up nanopowder synthesis. Int J Chem Reactor Eng 11:361–368 Majcher A, Wiejak J et al (2013) A novel reactor for microwave hydrothermal scale-up nanopowder synthesis. Int J Chem Reactor Eng 11:361–368
97.
Zurück zum Zitat Zhou Y (2005) Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr Nanosci 1:35–42 Zhou Y (2005) Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr Nanosci 1:35–42
98.
Zurück zum Zitat Lou XW, Archer LA et al (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019 Lou XW, Archer LA et al (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019
99.
Zurück zum Zitat Tanaka D, Kitagawa S (2008) Template effects in porous coordination polymers. Chem Mater 20(3):922–931 Tanaka D, Kitagawa S (2008) Template effects in porous coordination polymers. Chem Mater 20(3):922–931
100.
Zurück zum Zitat Thomas A, Goettmann F et al (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20(3):738–755 Thomas A, Goettmann F et al (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20(3):738–755
101.
Zurück zum Zitat Yamauchi Y, Kuroda K (2008) Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem Asian J 3(4):664–676 Yamauchi Y, Kuroda K (2008) Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem Asian J 3(4):664–676
102.
Zurück zum Zitat Zhang Q, Wang WS et al (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4(6):494–507 Zhang Q, Wang WS et al (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4(6):494–507
103.
Zurück zum Zitat Ethirajan A, Landfester K (2010) Functional hybrid materials with polymer nanoparticles as templates. Chem 16:9398–9412 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.) Ethirajan A, Landfester K (2010) Functional hybrid materials with polymer nanoparticles as templates. Chem 16:9398–9412 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.)
104.
Zurück zum Zitat Qi L (2010) Colloidal chemical approaches to inorganic micro- and nanostructures with controlled morphologies and patterns. Coord Chem Rev 254:1054–1071 Qi L (2010) Colloidal chemical approaches to inorganic micro- and nanostructures with controlled morphologies and patterns. Coord Chem Rev 254:1054–1071
105.
Zurück zum Zitat Ariga K, Ji QM et al (2012) Soft capsules, hard capsules, and hybrid capsules. Soft Mater 10(4):387–412 Ariga K, Ji QM et al (2012) Soft capsules, hard capsules, and hybrid capsules. Soft Mater 10(4):387–412
106.
Zurück zum Zitat Deleuze H, Backov R (2012) Integrative chemistry routes toward advanced functional hierarchical foams. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Deleuze H, Backov R (2012) Integrative chemistry routes toward advanced functional hierarchical foams. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
107.
Zurück zum Zitat Kimling MC, Caruso RA (2012) Templating of macroporous or swollen macrostructured polymers. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Kimling MC, Caruso RA (2012) Templating of macroporous or swollen macrostructured polymers. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
108.
Zurück zum Zitat Petkovich ND, Stein A (2012) Colloidal crystal templating approaches to materials with hierarchical porosity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Petkovich ND, Stein A (2012) Colloidal crystal templating approaches to materials with hierarchical porosity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
109.
Zurück zum Zitat Su B-L, Sanchez C et al (2012) Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Su B-L, Sanchez C et al (2012) Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
110.
Zurück zum Zitat Yan Q, Yu J et al (2012) Colloidal photonic crystals: fabrication and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Yan Q, Yu J et al (2012) Colloidal photonic crystals: fabrication and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
111.
Zurück zum Zitat Zhang H (2012) Porous materials by templating of small liquid drops. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Zhang H (2012) Porous materials by templating of small liquid drops. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
112.
Zurück zum Zitat Liu YD, Goebl J et al (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653 Liu YD, Goebl J et al (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653
113.
Zurück zum Zitat Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189–190:21–41 Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189–190:21–41
114.
Zurück zum Zitat Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42(9):3721–3739 Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42(9):3721–3739
115.
Zurück zum Zitat Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity Chem Mater 20:682–737 Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity Chem Mater 20:682–737
116.
Zurück zum Zitat Soler-Illia GJ, Sanchez C et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138 Soler-Illia GJ, Sanchez C et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138
117.
Zurück zum Zitat Rouquerol J, Avnir D et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758 Rouquerol J, Avnir D et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758
118.
Zurück zum Zitat Seo J, Sakamoto H et al (2010) Chemistry of porous coordination polymers having multimodal nanospace and their multimodal functionality. J Nanosci Nanotechnol 10(1):3–20 Seo J, Sakamoto H et al (2010) Chemistry of porous coordination polymers having multimodal nanospace and their multimodal functionality. J Nanosci Nanotechnol 10(1):3–20
119.
Zurück zum Zitat Xiao F-S, Meng X (2012) Zeolites with hierarchically porous structure: mesoporous zeolites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Xiao F-S, Meng X (2012) Zeolites with hierarchically porous structure: mesoporous zeolites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
120.
Zurück zum Zitat Yokoi T, Tatsumi T (2012) Hierarchically porous materials in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Yokoi T, Tatsumi T (2012) Hierarchically porous materials in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
121.
Zurück zum Zitat Zhang Y-H, Chen L-H et al (2012) Micro-macroporous structured zeolite. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Zhang Y-H, Chen L-H et al (2012) Micro-macroporous structured zeolite. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
122.
Zurück zum Zitat Janiak C, Henninger SK (2013) Porous coordination polymers as novel sorption materials for heat transformation processes. Chimia 67:419–424 Janiak C, Henninger SK (2013) Porous coordination polymers as novel sorption materials for heat transformation processes. Chimia 67:419–424
123.
Zurück zum Zitat Moeller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42(9):3689–3707 Moeller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42(9):3689–3707
124.
Zurück zum Zitat Crepaldi EL, Soler-Illia GJAA et al (2002) Design of transition metal oxide mesoporous thin films. Stud Surf Sci Catal 141:235–242 Crepaldi EL, Soler-Illia GJAA et al (2002) Design of transition metal oxide mesoporous thin films. Stud Surf Sci Catal 141:235–242
125.
Zurück zum Zitat Grosso D, Cagnol F et al (2003) Amorphous and crystalline mesoporous materials prepared via evaporation. Self-assembled nanostructured materials. Mat Res Soc Symp Proc 775:91–99, Lu Y, Brinker CJ, Antonietti M, Bai C (eds) Grosso D, Cagnol F et al (2003) Amorphous and crystalline mesoporous materials prepared via evaporation. Self-assembled nanostructured materials. Mat Res Soc Symp Proc 775:91–99, Lu Y, Brinker CJ, Antonietti M, Bai C (eds)
126.
Zurück zum Zitat Soler-Illia GJAA, Crepaldi EL et al (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8:109–126 Soler-Illia GJAA, Crepaldi EL et al (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8:109–126
127.
Zurück zum Zitat Hüsing N, Schubert U (2004) Porous inorganic-organic hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Hüsing N, Schubert U (2004) Porous inorganic-organic hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
128.
Zurück zum Zitat Kickelbick G (2004) Hybrid inorganic-organic mesoporous materials. Angew Chem Int Ed 43:3102–3104 Kickelbick G (2004) Hybrid inorganic-organic mesoporous materials. Angew Chem Int Ed 43:3102–3104
129.
Zurück zum Zitat Grosso D, Boissiere C et al (2006) Preparation, treatment and characterisation of nanocrystalline mesoporous ordered layers. J Sol Gel Sci Technol 40:141–154 Grosso D, Boissiere C et al (2006) Preparation, treatment and characterisation of nanocrystalline mesoporous ordered layers. J Sol Gel Sci Technol 40:141–154
130.
Zurück zum Zitat Eder F, Hüsing N (2009) Mesoporous silica layers with controllable porosity and pore size. Appl Surf Sci 256:S18–S21 Eder F, Hüsing N (2009) Mesoporous silica layers with controllable porosity and pore size. Appl Surf Sci 256:S18–S21
131.
Zurück zum Zitat Hoffmann F, Fröba M (2010) Silica-based mesoporous organic-inorganic hybrid materials. Wiley, New York Hoffmann F, Fröba M (2010) Silica-based mesoporous organic-inorganic hybrid materials. Wiley, New York
132.
Zurück zum Zitat Keppeler M, Holzbock J et al (2011) Inorganic-organic hybrid materials through post-synthesis modification: impact of the treatment with azides on the mesopore structure. Beilstein J Nanotechnol 2:486–498 Keppeler M, Holzbock J et al (2011) Inorganic-organic hybrid materials through post-synthesis modification: impact of the treatment with azides on the mesopore structure. Beilstein J Nanotechnol 2:486–498
133.
Zurück zum Zitat Shi YF, Wan Y et al (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40(7):3854–3878 Shi YF, Wan Y et al (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40(7):3854–3878
134.
Zurück zum Zitat Nakanishi K (2012) Hierarchically structured porous materials: application to separation sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Nakanishi K (2012) Hierarchically structured porous materials: application to separation sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
135.
Zurück zum Zitat Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140 Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140
136.
Zurück zum Zitat Ferey G, Haouas M et al (2014) Nanoporous solids: how do they form? An in situ approach. Chem Mater 26(1):299–309 Ferey G, Haouas M et al (2014) Nanoporous solids: how do they form? An in situ approach. Chem Mater 26(1):299–309
137.
Zurück zum Zitat Ferey G (2007) Hybrid porous solids. Stud Surf Sci Catal 168:327–374 Ferey G (2007) Hybrid porous solids. Stud Surf Sci Catal 168:327–374
138.
Zurück zum Zitat Ferey G (2007) Metal-organic frameworks. The young child of the porous solids family. Stud Surf Sci Catal 170A:66–86 Ferey G (2007) Metal-organic frameworks. The young child of the porous solids family. Stud Surf Sci Catal 170A:66–86
139.
Zurück zum Zitat Mu CZ, Xu F et al (2007) Application of functional metal-organic framework materials. Progr Chem 19(9):1345–1356 Mu CZ, Xu F et al (2007) Application of functional metal-organic framework materials. Progr Chem 19(9):1345–1356
140.
Zurück zum Zitat O'Keeffe M, Peskov MA et al (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41(12):1782–1789 O'Keeffe M, Peskov MA et al (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41(12):1782–1789
141.
Zurück zum Zitat Czaja AU, Trukhan N et al (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38(5):1284–1293 Czaja AU, Trukhan N et al (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38(5):1284–1293
142.
Zurück zum Zitat Ferey G, Sanchez, C et al. (2010) Solid inorganic-organic polycarboxylate hybrid material based on titanium, its method of preparation and uses, Mater thesis, Université Pierre et Marie CURIE, Paris Vi, FR, pp. 42 Ferey G, Sanchez, C et al. (2010) Solid inorganic-organic polycarboxylate hybrid material based on titanium, its method of preparation and uses, Mater thesis, Université Pierre et Marie CURIE, Paris Vi, FR, pp. 42
143.
Zurück zum Zitat McKinlay AC, Morris RE et al (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed 49(36):6260–6266 McKinlay AC, Morris RE et al (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed 49(36):6260–6266
144.
Zurück zum Zitat Betard A, Fischer RA (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083 (Washington, DC, U.S.) Betard A, Fischer RA (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083 (Washington, DC, U.S.)
145.
Zurück zum Zitat Morey MS, O'Brien S et al (2000) Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 12(4):898–911 Morey MS, O'Brien S et al (2000) Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 12(4):898–911
146.
Zurück zum Zitat Moeller K, Yilmaz B et al (2011) One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J Am Chem Soc 133(14):5284–5295 Moeller K, Yilmaz B et al (2011) One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J Am Chem Soc 133(14):5284–5295
147.
Zurück zum Zitat Calzaferri G, Bruhwiler D et al (2001) Quantum-sized silver, silver chloride and silver sulfide clusters. J Imag Sci Tech 45(4):331–339 Calzaferri G, Bruhwiler D et al (2001) Quantum-sized silver, silver chloride and silver sulfide clusters. J Imag Sci Tech 45(4):331–339
148.
Zurück zum Zitat Bruhwiler D, Leiggener C et al (2002) Luminescent silver sulfide clusters. J Phys Chem B 106(15):3770–3777 Bruhwiler D, Leiggener C et al (2002) Luminescent silver sulfide clusters. J Phys Chem B 106(15):3770–3777
149.
Zurück zum Zitat Leiggener C, Bruhwiler D et al (2003) Luminescence properties of Ag2S and Ag4S2 in zeolite A. J Mater Chem 13(8):1969–1977 Leiggener C, Bruhwiler D et al (2003) Luminescence properties of Ag2S and Ag4S2 in zeolite A. J Mater Chem 13(8):1969–1977
150.
Zurück zum Zitat Leiggener C, Calzaferri G (2005) Synthesis and luminescence properties of Ag2S and PbS clusters in zeolite A. Chemistry 11(24):7191–7198 Leiggener C, Calzaferri G (2005) Synthesis and luminescence properties of Ag2S and PbS clusters in zeolite A. Chemistry 11(24):7191–7198
151.
Zurück zum Zitat Wang YF, Bryan C et al (2002) Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina. J Colloid Interface Sci 254(1):23–30 Wang YF, Bryan C et al (2002) Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina. J Colloid Interface Sci 254(1):23–30
152.
Zurück zum Zitat Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13(10):765–768 Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13(10):765–768
153.
Zurück zum Zitat Liu J, Liu F et al (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19(34):6073–6084 Liu J, Liu F et al (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19(34):6073–6084
154.
Zurück zum Zitat Groger H, Kind C et al (2010) Nanoscale hollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality. Materials 3(8):4355–4386 Groger H, Kind C et al (2010) Nanoscale hollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality. Materials 3(8):4355–4386
155.
Zurück zum Zitat Hu J, Chen M et al (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491 Hu J, Chen M et al (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491
156.
Zurück zum Zitat Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145–164 Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145–164
157.
Zurück zum Zitat Bao Y, Yang YQ et al (2013) Research progress of hollow structural materials prepared via templating method. J Inorg Mater 28(5):459–468 Bao Y, Yang YQ et al (2013) Research progress of hollow structural materials prepared via templating method. J Inorg Mater 28(5):459–468
158.
Zurück zum Zitat Zhang BH, Fan H et al (2013) Synthesis of mesoporous hollow inorganic micro-/nano-structures via self-templating methods. Chem J Chinese U Chinese 34(1):1–14MathSciNet Zhang BH, Fan H et al (2013) Synthesis of mesoporous hollow inorganic micro-/nano-structures via self-templating methods. Chem J Chinese U Chinese 34(1):1–14MathSciNet
159.
Zurück zum Zitat Sarquis J (1980) Colloidal systems. J Chem Educ 57:602–605 Sarquis J (1980) Colloidal systems. J Chem Educ 57:602–605
160.
Zurück zum Zitat Everett DH (1989) Basic principles of colloid science [fotocopie]. Royal Society of Chemistry, London Everett DH (1989) Basic principles of colloid science [fotocopie]. Royal Society of Chemistry, London
161.
Zurück zum Zitat Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. CRC Press, Boca Raton Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. CRC Press, Boca Raton
162.
Zurück zum Zitat Fennell D, Wennerstroem H (1999) The colloidal domain. Wiley-VCH, New York Fennell D, Wennerstroem H (1999) The colloidal domain. Wiley-VCH, New York
163.
Zurück zum Zitat Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, New York Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, New York
164.
Zurück zum Zitat Bucak S, Rende D (2014) Colloid and surface chemistry, CRC Press, Boca Raton Bucak S, Rende D (2014) Colloid and surface chemistry, CRC Press, Boca Raton
165.
Zurück zum Zitat Schramm L (2001) Dictionary of colloid and interface science. Wiley, New York Schramm L (2001) Dictionary of colloid and interface science. Wiley, New York
166.
Zurück zum Zitat Weller H (2003) Synthesis and self-assembly of colloidal nanoparticles. Philos Trans R Soc London, Ser A 361:229–240 Weller H (2003) Synthesis and self-assembly of colloidal nanoparticles. Philos Trans R Soc London, Ser A 361:229–240
167.
Zurück zum Zitat Goodwin J (2004) Colloids and interfaces with surfactants and polymers. Wiley, New York Goodwin J (2004) Colloids and interfaces with surfactants and polymers. Wiley, New York
168.
Zurück zum Zitat Eastoe J, Hollamby MJ et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15 Eastoe J, Hollamby MJ et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15
169.
Zurück zum Zitat Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36(1):231–279 Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36(1):231–279
170.
Zurück zum Zitat Shaw D (1992) Introduction to Colloid and Surface Chemistry (Fourth Edition). Elsevier Ltd Shaw D (1992) Introduction to Colloid and Surface Chemistry (Fourth Edition). Elsevier Ltd
171.
Zurück zum Zitat Hamley IW (2007) Soft matter. Wiley, New York Hamley IW (2007) Soft matter. Wiley, New York
172.
Zurück zum Zitat Cosgrove T (2010) Colloid science: principles, methods and applications. Wiley, New York Cosgrove T (2010) Colloid science: principles, methods and applications. Wiley, New York
173.
Zurück zum Zitat Crespy D, Staff RH et al (2012) Chemical routes toward multicompartment colloids. Macromol Chem Phys 213:1183–1189 Crespy D, Staff RH et al (2012) Chemical routes toward multicompartment colloids. Macromol Chem Phys 213:1183–1189
174.
Zurück zum Zitat Turkevich J, Stevenson PC et al (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55–75 Turkevich J, Stevenson PC et al (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55–75
175.
Zurück zum Zitat Ramsay JDF (1992) Characteristics of inorganic colloids. Pure Appl Chem 64:1709–1713 Ramsay JDF (1992) Characteristics of inorganic colloids. Pure Appl Chem 64:1709–1713
176.
Zurück zum Zitat Palberg T (1997) Colloidal crystallization dynamics. Curr Opin Colloid Interface Sci 2(6):607–614 Palberg T (1997) Colloidal crystallization dynamics. Curr Opin Colloid Interface Sci 2(6):607–614
177.
Zurück zum Zitat Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344 Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344
178.
Zurück zum Zitat Ruckenstein E, Djikaev YS (2005) Recent developments in the kinetic theory of nucleation. Adv Colloid Interface Sci 118(1–3):51–72 Ruckenstein E, Djikaev YS (2005) Recent developments in the kinetic theory of nucleation. Adv Colloid Interface Sci 118(1–3):51–72
179.
Zurück zum Zitat Alekseeva AV, Bogatyrev VA et al (2006) Gold nanorods: synthesis and optical properties. Colloid J 68(6):661–678 Alekseeva AV, Bogatyrev VA et al (2006) Gold nanorods: synthesis and optical properties. Colloid J 68(6):661–678
180.
Zurück zum Zitat Roh K-H, Martin DC et al (2006) Triphasic nanocolloids. J Am Chem Soc 128:6796–6797 Roh K-H, Martin DC et al (2006) Triphasic nanocolloids. J Am Chem Soc 128:6796–6797
181.
Zurück zum Zitat Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317(2):351–374 Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317(2):351–374
182.
Zurück zum Zitat Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709 Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709
183.
Zurück zum Zitat Tao AR, Habas S et al (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325 Tao AR, Habas S et al (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325
184.
Zurück zum Zitat Gasser U (2009) Crystallization in three- and two-dimensional colloidal suspensions. J Phys Condens Matter 21(20) Gasser U (2009) Crystallization in three- and two-dimensional colloidal suspensions. J Phys Condens Matter 21(20)
185.
Zurück zum Zitat Aerts A, Haouas M et al (2010) Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and Si-29 NMR spectroscopy. Chemistry 16(9):2764–2774 Aerts A, Haouas M et al (2010) Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and Si-29 NMR spectroscopy. Chemistry 16(9):2764–2774
186.
Zurück zum Zitat Herlach DM, Klassen I et al (2010) Colloids as model systems for metals and alloys: a case study of crystallization. J Phys Condens Matter 22(15) Herlach DM, Klassen I et al (2010) Colloids as model systems for metals and alloys: a case study of crystallization. J Phys Condens Matter 22(15)
187.
Zurück zum Zitat Pileni MP (2011) Supra- and nanocrystallinities: a new scientific adventure. J Phys Condens Matter 23(50) Pileni MP (2011) Supra- and nanocrystallinities: a new scientific adventure. J Phys Condens Matter 23(50)
188.
Zurück zum Zitat Richter K, Birkner A et al (2011) Stability and growth behavior of transition metal nanoparticles in ionic liquids prepared by thermal evaporation: how stable are they really? Phys Chem Chem Phys 13:7136–7141 Richter K, Birkner A et al (2011) Stability and growth behavior of transition metal nanoparticles in ionic liquids prepared by thermal evaporation: how stable are they really? Phys Chem Chem Phys 13:7136–7141
189.
Zurück zum Zitat Pileni MP (2012) Self organization of inorganic nanocrystals: unexpected chemical and physical properties. J Colloid Interface Sci 388:1–8 Pileni MP (2012) Self organization of inorganic nanocrystals: unexpected chemical and physical properties. J Colloid Interface Sci 388:1–8
190.
Zurück zum Zitat Pileni MP (2012) Supra- and nanocrystallinity: specific properties related to crystal growth mechanisms and nanocrystallinity. Acc Chem Res 45(11):1965–1972 Pileni MP (2012) Supra- and nanocrystallinity: specific properties related to crystal growth mechanisms and nanocrystallinity. Acc Chem Res 45(11):1965–1972
191.
Zurück zum Zitat Palberg T (2014) Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J Phys Condens Matter 26(33) Palberg T (2014) Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J Phys Condens Matter 26(33)
192.
Zurück zum Zitat Bahnemann DW, Kormann C et al (1987) Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J Phys Chem 91(14):3789–3798 Bahnemann DW, Kormann C et al (1987) Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J Phys Chem 91(14):3789–3798
193.
Zurück zum Zitat Bahnemann DW (1993) Ultrasmall metal oxide particles: preparation, photophysical characterisation and photocatalytic properties. Isr J Chem 33(1):115–136 Bahnemann DW (1993) Ultrasmall metal oxide particles: preparation, photophysical characterisation and photocatalytic properties. Isr J Chem 33(1):115–136
194.
Zurück zum Zitat Erdemir D, Lee AY et al (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42(5):621–629 Erdemir D, Lee AY et al (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42(5):621–629
195.
Zurück zum Zitat Xia Y, Xiong Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103 Xia Y, Xiong Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103
196.
Zurück zum Zitat Bronstein LM, Polarz S et al (2001) Sub-nanometer noble-metal particle host synthesis in porous silica monoliths. Adv Mater 13(17):1333–1336 Bronstein LM, Polarz S et al (2001) Sub-nanometer noble-metal particle host synthesis in porous silica monoliths. Adv Mater 13(17):1333–1336
197.
Zurück zum Zitat Pileni MP, Lalatonne Y et al (2004) Self assemblies of nanocrystals: preparation, collective properties and uses. Faraday Discuss 125:251–264 Pileni MP, Lalatonne Y et al (2004) Self assemblies of nanocrystals: preparation, collective properties and uses. Faraday Discuss 125:251–264
198.
Zurück zum Zitat Pileni MP (2007) Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 111(26):9019–9038 Pileni MP (2007) Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 111(26):9019–9038
199.
Zurück zum Zitat Pileni MP (2008) Self-assembly of inorganic magnetic nanocrystals: a new physics emerges. J Phys D Appl Phys 41(13) Pileni MP (2008) Self-assembly of inorganic magnetic nanocrystals: a new physics emerges. J Phys D Appl Phys 41(13)
200.
Zurück zum Zitat Pileni MP (2009) Self assembly of inorganic nanocrystals in 3D supra crystals: intrinsic properties. Surf Sci 603(10–12):1498–1505 Pileni MP (2009) Self assembly of inorganic nanocrystals in 3D supra crystals: intrinsic properties. Surf Sci 603(10–12):1498–1505
201.
Zurück zum Zitat Pileni MP (2010) Inorganic nanocrystals self ordered in 2D superlattices: how versatile are the physical and chemical properties? Phys Chem Chem Phys 12(38):11821–11835 Pileni MP (2010) Inorganic nanocrystals self ordered in 2D superlattices: how versatile are the physical and chemical properties? Phys Chem Chem Phys 12(38):11821–11835
202.
Zurück zum Zitat Schmid G (2006) Nanoparticles: from theory to application. Wiley VCH, Weinheim Schmid G (2006) Nanoparticles: from theory to application. Wiley VCH, Weinheim
203.
Zurück zum Zitat Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328 Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328
204.
Zurück zum Zitat Hutchings GJ, Brust M et al (2008) Gold—an introductory perspective. Chem Soc Rev 37(9):1759–1765 Hutchings GJ, Brust M et al (2008) Gold—an introductory perspective. Chem Soc Rev 37(9):1759–1765
205.
Zurück zum Zitat Jolivet JP, Tronc E et al (2000) Synthesis of iron oxide- and metal-based nanomaterials. Eur Phys J Appl Phys 10:167–172 Jolivet JP, Tronc E et al (2000) Synthesis of iron oxide- and metal-based nanomaterials. Eur Phys J Appl Phys 10:167–172
206.
Zurück zum Zitat Liz-Marzan LM (2004) Nanometals formation and color. Mater Today 7(2):26–31 Liz-Marzan LM (2004) Nanometals formation and color. Mater Today 7(2):26–31
207.
Zurück zum Zitat Perez-Juste J, Pastoriza-Santos I et al (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901 Perez-Juste J, Pastoriza-Santos I et al (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901
208.
Zurück zum Zitat Wang X, Zhuang J et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124 Wang X, Zhuang J et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124
209.
Zurück zum Zitat Liao H, Nehl CL et al (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201–208 Liao H, Nehl CL et al (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201–208
210.
Zurück zum Zitat Jain PK, Huang X et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586 Jain PK, Huang X et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586
211.
Zurück zum Zitat Mudring A-V, Alammar T et al (2009) Nanoparticle synthesis in ionic liquids. ACS Symp Ser 1030:177–188 Mudring A-V, Alammar T et al (2009) Nanoparticle synthesis in ionic liquids. ACS Symp Ser 1030:177–188
212.
Zurück zum Zitat Pastoriza-Santos I, Alvarez-Puebla RA et al (2010) Synthetic routes and plasmonic properties of noble metal nanoplates. Eur J Inorg Chem 27:4288–4297 Pastoriza-Santos I, Alvarez-Puebla RA et al (2010) Synthetic routes and plasmonic properties of noble metal nanoplates. Eur J Inorg Chem 27:4288–4297
213.
Zurück zum Zitat Zeng H, Du X-W et al (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353 Zeng H, Du X-W et al (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353
214.
Zurück zum Zitat Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346 Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346
215.
Zurück zum Zitat Pasquato L, Pengo P et al (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14(24):3481–3487 Pasquato L, Pengo P et al (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14(24):3481–3487
216.
Zurück zum Zitat Guarise C, Pasquato L et al (2005) Reversible aggregation/deaggregation of gold nanoparticles induced by a cleavable dithiol linker. Langmuir 21(12):5537–5541 Guarise C, Pasquato L et al (2005) Reversible aggregation/deaggregation of gold nanoparticles induced by a cleavable dithiol linker. Langmuir 21(12):5537–5541
217.
Zurück zum Zitat Cao-Milan R, Liz-Marzan LM (2014) Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 11(5):741–752 Cao-Milan R, Liz-Marzan LM (2014) Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 11(5):741–752
218.
Zurück zum Zitat Özgür Ü, Alivov YI et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):1–103 Özgür Ü, Alivov YI et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):1–103
219.
Zurück zum Zitat Morkoç H, Özgür Ü (2008) Zinc oxide: materials preparation, properties, and devices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Morkoç H, Özgür Ü (2008) Zinc oxide: materials preparation, properties, and devices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
220.
Zurück zum Zitat Morkoç H, Özgür Ü (2009) Zinc oxide: fundamentals materials and device technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Morkoç H, Özgür Ü (2009) Zinc oxide: fundamentals materials and device technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
221.
Zurück zum Zitat Hilgendorff M, Spanhel L et al (1998) From ZnO colloids to nanocrystalline highly conductive films. J Electrochem Soc 145(10):3632–3637 Hilgendorff M, Spanhel L et al (1998) From ZnO colloids to nanocrystalline highly conductive films. J Electrochem Soc 145(10):3632–3637
222.
Zurück zum Zitat Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B Solid 80(1–3):383–387 Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B Solid 80(1–3):383–387
223.
Zurück zum Zitat Cozzoli PD, Kornowski A et al (2005) Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction. J Phys Chem B 109(7):2638–2644 Cozzoli PD, Kornowski A et al (2005) Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction. J Phys Chem B 109(7):2638–2644
224.
Zurück zum Zitat Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561–1573 Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561–1573
225.
Zurück zum Zitat Klingshirn C, Hauschild R et al (2005) ZnO rediscovered—once again!? Superlattices Microstruct 38(4–6):209–222 Klingshirn C, Hauschild R et al (2005) ZnO rediscovered—once again!? Superlattices Microstruct 38(4–6):209–222
226.
Zurück zum Zitat Buha J, Djerdj I et al (2006) Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile. Cryst Growth Des 7(1):113–116 Buha J, Djerdj I et al (2006) Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile. Cryst Growth Des 7(1):113–116
227.
Zurück zum Zitat Dem'yanets L, Li L et al (2006) Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J Mater Sci 41(5):1439–1444 Dem'yanets L, Li L et al (2006) Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J Mater Sci 41(5):1439–1444
228.
Zurück zum Zitat Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961 Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961
229.
Zurück zum Zitat Spanhel L (2006) Colloidal ZnO nanostructures and functional coatings: a survey. J Sol Gel Sci Technol 39(1):7–24 Spanhel L (2006) Colloidal ZnO nanostructures and functional coatings: a survey. J Sol Gel Sci Technol 39(1):7–24
230.
Zurück zum Zitat Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244(9):3027–3073 Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244(9):3027–3073
231.
Zurück zum Zitat Klingshirn C (2007) ZnO: material, physics and applications. ChemPhysChem 8(6):782–803 Klingshirn C (2007) ZnO: material, physics and applications. ChemPhysChem 8(6):782–803
232.
Zurück zum Zitat Ellmer K, Klein A (2008) ZnO and its applications. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide, vol 104. Springer, Berlin/Heidelberg, pp 1–33 Ellmer K, Klein A (2008) ZnO and its applications. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide, vol 104. Springer, Berlin/Heidelberg, pp 1–33
233.
Zurück zum Zitat Anderson J, Chris GVW (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501 Anderson J, Chris GVW (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501
234.
Zurück zum Zitat Ahmad M, Zhu J (2011) ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21(3):599–614MathSciNet Ahmad M, Zhu J (2011) ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21(3):599–614MathSciNet
235.
Zurück zum Zitat Gomez J, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48(2):612–624 Gomez J, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48(2):612–624
236.
Zurück zum Zitat Ludi B, Niederberger M (2013) Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Trans 42(35):12554–12568 Ludi B, Niederberger M (2013) Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Trans 42(35):12554–12568
237.
Zurück zum Zitat Wahab R, Khan F et al (2013) Hydrogen adsorption properties of nano- and microstructures of ZnO. J Nanomater 542753 Wahab R, Khan F et al (2013) Hydrogen adsorption properties of nano- and microstructures of ZnO. J Nanomater 542753
238.
Zurück zum Zitat Famengo A, Anantharaman S et al (2009) Facile and reproducible synthesis of nanostructured colloidal ZnO nanoparticles from zinc acetylacetonate: effect of experimental parameters and mechanistic investigations. Eur J Inorg Chem 33:5017–5028 Famengo A, Anantharaman S et al (2009) Facile and reproducible synthesis of nanostructured colloidal ZnO nanoparticles from zinc acetylacetonate: effect of experimental parameters and mechanistic investigations. Eur J Inorg Chem 33:5017–5028
239.
Zurück zum Zitat Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113(8):2826–2833 Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113(8):2826–2833
240.
Zurück zum Zitat Niederberger M, Garnweitner G et al (2006) Non-aqueous routes to crystalline metal oxide nanoparticles: formation mechanisms and applications. Prog Solid State Chem 33:59–70 Niederberger M, Garnweitner G et al (2006) Non-aqueous routes to crystalline metal oxide nanoparticles: formation mechanisms and applications. Prog Solid State Chem 33:59–70
241.
Zurück zum Zitat Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304 Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304
242.
Zurück zum Zitat Franzmann E, Khalil F et al (2011) A biomimetic principle for the chemical modification of metal surfaces: synthesis of tripodal catecholates as analogues of siderophores and mussel adhesion proteins. Chemistry Eur. J (Chemistry- A European Journal) 17(31):8596–8603 Franzmann E, Khalil F et al (2011) A biomimetic principle for the chemical modification of metal surfaces: synthesis of tripodal catecholates as analogues of siderophores and mussel adhesion proteins. Chemistry Eur. J (Chemistry- A European Journal) 17(31):8596–8603
243.
Zurück zum Zitat Khalil F, Franzmann E et al (2014) Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel. Colloids Surf B Biointerfaces 117:185–192 Khalil F, Franzmann E et al (2014) Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel. Colloids Surf B Biointerfaces 117:185–192
244.
Zurück zum Zitat Maison W, Khalil F et al. Synthesis of tripodal bisphosphonate derivatives with an adamantyl base for functionalising surfaces Patent number: EP 2428517 B1 20131106 (DE) Univ Giessen, Justus-Liebig, Germany Maison W, Khalil F et al. Synthesis of tripodal bisphosphonate derivatives with an adamantyl base for functionalising surfaces Patent number: EP 2428517 B1 20131106 (DE) Univ Giessen, Justus-Liebig, Germany
245.
Zurück zum Zitat Maison W, Khalil F et al. Synthesis of tripodal catechol derivatives with a flexible base for functionalising surfaces Patent number: EP 2428503 B1 20141210 (DE) Univ Giessen, Justus-Liebig, Germany Maison W, Khalil F et al. Synthesis of tripodal catechol derivatives with a flexible base for functionalising surfaces Patent number: EP 2428503 B1 20141210 (DE) Univ Giessen, Justus-Liebig, Germany
246.
Zurück zum Zitat Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles J Am Chem Soc 126:9938–9939 Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles J Am Chem Soc 126:9938–9939
247.
Zurück zum Zitat Ye Q, Zhou F et al (2011) Bioinspired catecholic chemistry for surface modification Chem Soc Rev 7:4244–4258 Ye Q, Zhou F et al (2011) Bioinspired catecholic chemistry for surface modification Chem Soc Rev 7:4244–4258
248.
Zurück zum Zitat Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649 Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649
249.
Zurück zum Zitat Pastoriza-Santos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2(8):903–905 Pastoriza-Santos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2(8):903–905
250.
Zurück zum Zitat Murphy CJ, Sau TK et al (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30(5):349–355 Murphy CJ, Sau TK et al (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30(5):349–355
251.
Zurück zum Zitat Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670 (London, U. K.) Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670 (London, U. K.)
252.
Zurück zum Zitat Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf 295(1–3):228–232 Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf 295(1–3):228–232
253.
Zurück zum Zitat Nelayah J, Kociak M et al (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5):348–353 Nelayah J, Kociak M et al (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5):348–353
254.
Zurück zum Zitat Lu X, Rycenga M et al (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192 Lu X, Rycenga M et al (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192
255.
Zurück zum Zitat Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41(1):242–257 Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41(1):242–257
256.
Zurück zum Zitat Klinkova A, Choueiri RM et al (2014) Self-assembled plasmonic nanostructures. Chem Soc Rev 43(11):3976–3991 Klinkova A, Choueiri RM et al (2014) Self-assembled plasmonic nanostructures. Chem Soc Rev 43(11):3976–3991
257.
Zurück zum Zitat Caswell KK, Bender CM et al (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669 Caswell KK, Bender CM et al (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669
258.
Zurück zum Zitat Li J, Chen Z et al (1999) Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coord Chem Rev 190–192:707–735 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.) Li J, Chen Z et al (1999) Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coord Chem Rev 190–192:707–735 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
259.
Zurück zum Zitat Gautam UK, Ghosh M et al (2002) Solvothermal routes to capped oxide and chalcogenide nanoparticles. Pure Appl Chem 74:1643–1649 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.) Gautam UK, Ghosh M et al (2002) Solvothermal routes to capped oxide and chalcogenide nanoparticles. Pure Appl Chem 74:1643–1649 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
260.
Zurück zum Zitat Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222–234 Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222–234
261.
Zurück zum Zitat Sokolov MN, Abramov PA (2012) Chalcogenide clusters of groups 8-10 noble metals. Coord Chem Rev 256(17–18):1972–1991 Sokolov MN, Abramov PA (2012) Chalcogenide clusters of groups 8-10 noble metals. Coord Chem Rev 256(17–18):1972–1991
262.
Zurück zum Zitat Tolia J, Chakraborty M et al (2012) Synthesis and characterization of semiconductor metal sulfide nanocrystals using microemulsion technique. Cryst Res Technol 47(8):909–916 Tolia J, Chakraborty M et al (2012) Synthesis and characterization of semiconductor metal sulfide nanocrystals using microemulsion technique. Cryst Res Technol 47(8):909–916
263.
Zurück zum Zitat Armelao L, Camozzo D et al (2006) Synthesis of copper sulphide nanoparticles in carboxylic acids as solvent. J Nanosci Nanotechnol 6(2):401–408 Armelao L, Camozzo D et al (2006) Synthesis of copper sulphide nanoparticles in carboxylic acids as solvent. J Nanosci Nanotechnol 6(2):401–408
264.
Zurück zum Zitat Grozdanov I, Najdoski M (1995) Optical and electrical properties of copper sulfide films of variable composition. J Solid State Chem 114(2):469–475 Grozdanov I, Najdoski M (1995) Optical and electrical properties of copper sulfide films of variable composition. J Solid State Chem 114(2):469–475
265.
Zurück zum Zitat Grijalva H, Inoue M et al (1996) Amorphous and crystalline copper sulfides, CuS. J Mater Chem 6(7):1157–1160 Grijalva H, Inoue M et al (1996) Amorphous and crystalline copper sulfides, CuS. J Mater Chem 6(7):1157–1160
266.
Zurück zum Zitat Raevskaya AE, Stroyuk AL et al (2004) Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J Mol Catal A Chem 212(1–2):259–265 Raevskaya AE, Stroyuk AL et al (2004) Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J Mol Catal A Chem 212(1–2):259–265
267.
Zurück zum Zitat Basu M, Sinha AK et al (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid–liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44(16):6313–6318 Basu M, Sinha AK et al (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid–liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44(16):6313–6318
268.
Zurück zum Zitat Goel S, Chen F et al (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10(4):631–645 Goel S, Chen F et al (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10(4):631–645
269.
Zurück zum Zitat Prince LM (1977) Microemulsions: theory and practice. Academic, New York Prince LM (1977) Microemulsions: theory and practice. Academic, New York
270.
Zurück zum Zitat Landfester K, Bechthold N et al (1999) Formulation and stability mechanisms of polymerizable miniemulsions. Macromolecules 32(16):5222–5228 Landfester K, Bechthold N et al (1999) Formulation and stability mechanisms of polymerizable miniemulsions. Macromolecules 32(16):5222–5228
271.
Zurück zum Zitat Aserin A (2008) Multiple emulsion: technology and applications. Wiley, New York Aserin A (2008) Multiple emulsion: technology and applications. Wiley, New York
272.
Zurück zum Zitat Tovstun SA, Razumov VF (2011) Preparation of nanoparticles in reverse microemulsions. Russ Chem Rev 80(10):953–969 Tovstun SA, Razumov VF (2011) Preparation of nanoparticles in reverse microemulsions. Russ Chem Rev 80(10):953–969
273.
Zurück zum Zitat Tadros TF (2014) An introduction to surfactants. Walter de Gruyter, Berlin Tadros TF (2014) An introduction to surfactants. Walter de Gruyter, Berlin
274.
Zurück zum Zitat Bechthold N, Tiarks F et al (2000) Miniemulsion polymerization: applications and new materials. Macromol Symp 151:549–555 Bechthold N, Tiarks F et al (2000) Miniemulsion polymerization: applications and new materials. Macromol Symp 151:549–555
275.
Zurück zum Zitat Landfester K (2000) Recent developments in miniemulsions—formation and stability mechanisms. Macromol Symp 150:171–178 Landfester K (2000) Recent developments in miniemulsions—formation and stability mechanisms. Macromol Symp 150:171–178
276.
Zurück zum Zitat Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27(4):689–757 Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27(4):689–757
277.
Zurück zum Zitat Landfester K (2003) Miniemulsions for nanoparticle synthesis. In: Antonietti M (ed) Colloid chemistry II. Springer, Berlin/Heidelberg, pp 75–123 Landfester K (2003) Miniemulsions for nanoparticle synthesis. In: Antonietti M (ed) Colloid chemistry II. Springer, Berlin/Heidelberg, pp 75–123
278.
Zurück zum Zitat Landfester K (2003) Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75–123 Landfester K (2003) Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75–123
279.
Zurück zum Zitat Landfester K (2005) Designing particles: miniemulsion technology and its application in functional coating systems. Eur Coating J 20–22:24–25 Landfester K (2005) Designing particles: miniemulsion technology and its application in functional coating systems. Eur Coating J 20–22:24–25
280.
Zurück zum Zitat Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212–224 Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212–224
281.
Zurück zum Zitat Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212–224 Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212–224
282.
Zurück zum Zitat Cao Z, Ziener U (2013) Synthesis of nanostructured materials in inverse miniemulsions and their applications. Nanoscale 5(21):10093–10107 Cao Z, Ziener U (2013) Synthesis of nanostructured materials in inverse miniemulsions and their applications. Nanoscale 5(21):10093–10107
283.
Zurück zum Zitat Landfester K, Antonietti M 2004 Miniemulsions for the convenient synthesis of organic and inorganic nanoparticles and “single molecule” applications in materials chemistry. F. Caruso (ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG Landfester K, Antonietti M 2004 Miniemulsions for the convenient synthesis of organic and inorganic nanoparticles and “single molecule” applications in materials chemistry. F. Caruso (ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG
284.
Zurück zum Zitat Landfester K, Tiarks F et al (2000) Polyaddition in miniemulsions. A new route to polymer dispersions. Macromol Chem Phys 201:1–5 Landfester K, Tiarks F et al (2000) Polyaddition in miniemulsions. A new route to polymer dispersions. Macromol Chem Phys 201:1–5
285.
Zurück zum Zitat Landfester K, Willert M et al (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33(7):2370–2376 Landfester K, Willert M et al (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33(7):2370–2376
286.
Zurück zum Zitat Weiss CK, Ziener U et al (2007) A route to nonfunctionalized and functionalized poly(n-butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules 40(4):928–938 Weiss CK, Ziener U et al (2007) A route to nonfunctionalized and functionalized poly(n-butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules 40(4):928–938
287.
Zurück zum Zitat Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507 Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507
288.
Zurück zum Zitat Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148 Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148
289.
Zurück zum Zitat Landfester K, Weiss CK (2010) Encapsulation by miniemulsion polymerization. Adv Polym Sci 229:1–49 Landfester K, Weiss CK (2010) Encapsulation by miniemulsion polymerization. Adv Polym Sci 229:1–49
290.
Zurück zum Zitat Willert M, Rothe R et al (2001) Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals. Chem Mater 13(12):4681–4685 Willert M, Rothe R et al (2001) Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals. Chem Mater 13(12):4681–4685
291.
Zurück zum Zitat Peng B, Chen M et al (2008) Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J Colloid Interface Sci 321(1):67–73 Peng B, Chen M et al (2008) Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J Colloid Interface Sci 321(1):67–73
292.
Zurück zum Zitat Musyanovych A, Landfester K (2007) Core-shell particles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Musyanovych A, Landfester K (2007) Core-shell particles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
293.
Zurück zum Zitat Caruso F, Spasova M et al (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13(14):1090–1095 Caruso F, Spasova M et al (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13(14):1090–1095
294.
Zurück zum Zitat Hajir M, Dolcet P et al (2012) Sol-gel processes at the droplet interface: hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. J Mater Chem 22(12):5622–5628 Hajir M, Dolcet P et al (2012) Sol-gel processes at the droplet interface: hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. J Mater Chem 22(12):5622–5628
295.
Zurück zum Zitat Pinna N, Weiss K et al (2001) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17(26):7982–7987 Pinna N, Weiss K et al (2001) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17(26):7982–7987
296.
Zurück zum Zitat Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973 Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973
297.
Zurück zum Zitat Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2(3):145–150 Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2(3):145–150
298.
Zurück zum Zitat Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115(10):3887–3896 Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115(10):3887–3896
299.
Zurück zum Zitat Lisiecki I, Pileni MP (1995) Copper metallic particles synthesized in-situ in reverse micelles—influence of various parameters on the size of the particles. J Physa Chem 99(14):5077–5082 Lisiecki I, Pileni MP (1995) Copper metallic particles synthesized in-situ in reverse micelles—influence of various parameters on the size of the particles. J Physa Chem 99(14):5077–5082
300.
Zurück zum Zitat Maillard M, Giorgio S et al (2002) Silver nanodisks. Adv Mater 14(15):1084–1086 Maillard M, Giorgio S et al (2002) Silver nanodisks. Adv Mater 14(15):1084–1086
301.
Zurück zum Zitat Pinna N, Maillard M et al (2002) Optical properties of silver nanocrystals self-organized in a two-dimensional superlattice: Substrate effect. Phys Rev B 66(4) Pinna N, Maillard M et al (2002) Optical properties of silver nanocrystals self-organized in a two-dimensional superlattice: Substrate effect. Phys Rev B 66(4)
302.
Zurück zum Zitat Maillard M, Giorgio S et al (2003) Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J Phys Chem B 107(11):2466–2470 Maillard M, Giorgio S et al (2003) Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J Phys Chem B 107(11):2466–2470
303.
Zurück zum Zitat Mishra S, Daniele S et al (2007) Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chem Soc Rev 36:1770–1787 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.) Mishra S, Daniele S et al (2007) Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chem Soc Rev 36:1770–1787 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.)
304.
Zurück zum Zitat Carpenter EE, Sims JA et al (2000) Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J Appl Phys 87(9):5615–5617 Carpenter EE, Sims JA et al (2000) Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J Appl Phys 87(9):5615–5617
305.
Zurück zum Zitat Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8(2):137–144 Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8(2):137–144
306.
Zurück zum Zitat Lopez-Quintela MA, Tojo C et al (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9(3–4):264–278 Lopez-Quintela MA, Tojo C et al (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9(3–4):264–278
307.
Zurück zum Zitat Dolcet P, Casarin M et al (2012) Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. J Mater Chem 22:1620–1626 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.) Dolcet P, Casarin M et al (2012) Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. J Mater Chem 22:1620–1626 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
308.
Zurück zum Zitat Dolcet P, Latini F et al (2013) Inorganic chemistry in a nanoreactor: doped ZnO nanostructures by miniemulsion. Eur J Inorg Chem 2013(13):2291–2300 Dolcet P, Latini F et al (2013) Inorganic chemistry in a nanoreactor: doped ZnO nanostructures by miniemulsion. Eur J Inorg Chem 2013(13):2291–2300
309.
Zurück zum Zitat Butturini E, Dolcet P et al (2014) Simple, common but functional: biocompatible and luminescent rare-earth doped magnesium and calcium hydroxides from miniemulsion. J Mater Chem 2:6639–6651 Butturini E, Dolcet P et al (2014) Simple, common but functional: biocompatible and luminescent rare-earth doped magnesium and calcium hydroxides from miniemulsion. J Mater Chem 2:6639–6651
310.
Zurück zum Zitat Taden A, Antonietti M et al (2004) Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions. Chem Mater 16(24):5081–5087 Taden A, Antonietti M et al (2004) Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions. Chem Mater 16(24):5081–5087
311.
Zurück zum Zitat Nabih N, Schiller R et al (2011) Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology 22(13):135606 Nabih N, Schiller R et al (2011) Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology 22(13):135606
312.
Zurück zum Zitat Rossmanith R, Weiss CK et al (2008) Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chem Mater 20:5768–5780 Rossmanith R, Weiss CK et al (2008) Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chem Mater 20:5768–5780
313.
Zurück zum Zitat Kubiak P, Froeschl T et al (2011) TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. Small 7:1690–1696 Kubiak P, Froeschl T et al (2011) TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. Small 7:1690–1696
314.
Zurück zum Zitat Heutz NA, Dolcet P et al (2013) Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion. Nanoscale 5:10534–10541 Heutz NA, Dolcet P et al (2013) Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion. Nanoscale 5:10534–10541
315.
Zurück zum Zitat Rohe M, Löffler E et al (2008) A gold-containing TiO complex: a crystalline molecular precursor as an alternative route to Au/TiO2 composites. Dalton Trans 864(44):6106–6109 Rohe M, Löffler E et al (2008) A gold-containing TiO complex: a crystalline molecular precursor as an alternative route to Au/TiO2 composites. Dalton Trans 864(44):6106–6109
Metadaten
Titel
Sustainable and Very-Low-Temperature Wet-Chemistry Routes for the Synthesis of Crystalline Inorganic Nanostructures
verfasst von
Silvia Gross
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15461-9_1

Neuer Inhalt