Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Material Cycles and Waste Management 2/2021

19.01.2021 | ORIGINAL ARTICLE

Sustainable approach for the treatment of poultry manure and starchy wastewater by integrating dark fermentation and microalgal cultivation

verfasst von: Rokesh Radhakrishnan, Sanjukta Banerjee, Srijoni Banerjee, Vaishali Singh, Debabrata Das

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Dwindling fossil fuels, and the rise in energy demand have urged us to explore alternative renewable energy forms. An integrated process of dark fermentation and microalgal cultivation to deliver biofuels are gaining momentum in recent times. In this study, in the first stage, the starchy wastewater (SWW) with poultry manure (PM) was treated to produce a maximum hydrogen yield of 4.11 mol H2/Kg COD reduced to 5.03 mol H2/Kg COD reduced. The reutilization of soluble spent wash for the cultivation of Chlamydomonas reinhardtii yielded a biomass concentration of 1.45–1.02 g/L. The potentiality of algae to produce biodiesel was checked effectively, and it was reported that a biodiesel of 90.34 g/Kg Algal Biomass to 119.61 g/Kg Algal was yielded. The integration of the process enhanced the overall energy with an efficient removal of organic content. In conclusion, the valorisation of PM with SWW through dark fermentation and microalgal cultivation will open avenues to generate sustainable bioenergy forms.

Graphic abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28 Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28
3.
Zurück zum Zitat Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: current advances and future directions. J Waste Manag 71:734–748 Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: current advances and future directions. J Waste Manag 71:734–748
5.
Zurück zum Zitat Wei J, Liu ZT, Zhang X (2010) Biohydrogen production from starch wastewater and application in fuel cell. Int J Hydrog Energy 35:2949–2952 Wei J, Liu ZT, Zhang X (2010) Biohydrogen production from starch wastewater and application in fuel cell. Int J Hydrog Energy 35:2949–2952
6.
Zurück zum Zitat Lin CY, Lay CH (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrog Energy 29:41–45 Lin CY, Lay CH (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrog Energy 29:41–45
8.
Zurück zum Zitat Kulcu R (2016) New kinetic modelling parameters for composting process. J Mater Cycles Waste Manag 18(4):734–741 Kulcu R (2016) New kinetic modelling parameters for composting process. J Mater Cycles Waste Manag 18(4):734–741
9.
Zurück zum Zitat Kawata K, Nissato K, Shiota N, Hori T, Asada T, Oikawa K (2006) Variation in pesticide concentrations during composting of food waste and fowl droppings. Bull Environ Contam Toxicol 77:391–398 Kawata K, Nissato K, Shiota N, Hori T, Asada T, Oikawa K (2006) Variation in pesticide concentrations during composting of food waste and fowl droppings. Bull Environ Contam Toxicol 77:391–398
10.
Zurück zum Zitat Demirel B, Göl NP, Onay TT (2013) Evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. J Mater Cycles Waste Manag 15(2):242–246 Demirel B, Göl NP, Onay TT (2013) Evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. J Mater Cycles Waste Manag 15(2):242–246
11.
Zurück zum Zitat Lo YC, Chen CY, Lee CM, Chang JS (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. Int J Hydrog Energy 36:14059–14068 Lo YC, Chen CY, Lee CM, Chang JS (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. Int J Hydrog Energy 36:14059–14068
12.
Zurück zum Zitat Sun C, Hao P, Qin B, Wang B, Di X, Li Y (2016) Co-production of hydrogen and methane from herbal medicine wastewater by a combined UASB system with immobilized sludge (H 2 production) and UASB system with suspended sludge (CH4 production). Water Sci Technol 73:130–136 Sun C, Hao P, Qin B, Wang B, Di X, Li Y (2016) Co-production of hydrogen and methane from herbal medicine wastewater by a combined UASB system with immobilized sludge (H 2 production) and UASB system with suspended sludge (CH4 production). Water Sci Technol 73:130–136
13.
Zurück zum Zitat Schievano A, Sciarria TP, Gao YC, Scaglia B, Salati S, Zanardo M, Quiao W, Dong R, Adani F (2016) Dark fermentation, anaerobic digestion and microbial fuel cells: an integrated system to valorize swine manure and rice bran. J Waste Manag 56:519–529 Schievano A, Sciarria TP, Gao YC, Scaglia B, Salati S, Zanardo M, Quiao W, Dong R, Adani F (2016) Dark fermentation, anaerobic digestion and microbial fuel cells: an integrated system to valorize swine manure and rice bran. J Waste Manag 56:519–529
14.
Zurück zum Zitat Mishra P, Balachandar G, Das D (2017) Improvement in biohythane production using organic solid waste and distillery effluent. J Waste Manag 66:70–78 Mishra P, Balachandar G, Das D (2017) Improvement in biohythane production using organic solid waste and distillery effluent. J Waste Manag 66:70–78
15.
Zurück zum Zitat Varanasi JL, Kumari S, Das D (2018) Improvement of energy recovery from water hyacinth by using integrated system. Int J Hydrog Energy 43:1303–1318 Varanasi JL, Kumari S, Das D (2018) Improvement of energy recovery from water hyacinth by using integrated system. Int J Hydrog Energy 43:1303–1318
16.
Zurück zum Zitat Hassan GK, Hemdan BA, El-Gohary FA (2020) Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration. J Mater Cycles Waste Manag 22:1218–1226 Hassan GK, Hemdan BA, El-Gohary FA (2020) Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration. J Mater Cycles Waste Manag 22:1218–1226
17.
Zurück zum Zitat Rani DS, Thirumale S, Nand K (2003) Methane generation from corncobs treated with xylanolytic consortia. J Mater Cycles Waste Manag 5(2):125–129 Rani DS, Thirumale S, Nand K (2003) Methane generation from corncobs treated with xylanolytic consortia. J Mater Cycles Waste Manag 5(2):125–129
18.
Zurück zum Zitat Van der Hoek J, Duijff R, Reinstra O (2018) Nitrogen recovery from wastewater: Possibilities, competition with other resources, and adaptation pathways. Sustainability 10:4605 Van der Hoek J, Duijff R, Reinstra O (2018) Nitrogen recovery from wastewater: Possibilities, competition with other resources, and adaptation pathways. Sustainability 10:4605
19.
Zurück zum Zitat Kumari S, Das D (2017) Improvement of biohydrogen production using acidogenic culture. Int J Hydrog Energy 42:4083–4094 Kumari S, Das D (2017) Improvement of biohydrogen production using acidogenic culture. Int J Hydrog Energy 42:4083–4094
20.
Zurück zum Zitat Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669 Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669
21.
Zurück zum Zitat Ghosh, S., Roy, S., Das, D.: Enhancement in lipid content of Chlorella sp. MJ 11/11 from the spent medium of thermophilic biohydrogen production process. Bioresour. Technol. 223, 219–226 (2017) Ghosh, S., Roy, S., Das, D.: Enhancement in lipid content of Chlorella sp. MJ 11/11 from the spent medium of thermophilic biohydrogen production process. Bioresour. Technol. 223, 219–226 (2017)
22.
Zurück zum Zitat Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
24.
Zurück zum Zitat Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energ Convers Manage 50:1834–1840 Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energ Convers Manage 50:1834–1840
25.
Zurück zum Zitat Wan J, Gu J, Zhao Q, Liu Y (2016) COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Sci Rep 6:25054 Wan J, Gu J, Zhao Q, Liu Y (2016) COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Sci Rep 6:25054
26.
Zurück zum Zitat Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
27.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 CrossRef Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 CrossRef
28.
Zurück zum Zitat American Public Health Association, A. P. H. A.: Standard methods for the examination of water and wastewater. 21 (1995) American Public Health Association, A. P. H. A.: Standard methods for the examination of water and wastewater. 21 (1995)
29.
Zurück zum Zitat Nicholas DD, Nason A (1957) Determination of nitrate and nitrite. Methods Enzymol 3:981–984 Nicholas DD, Nason A (1957) Determination of nitrate and nitrite. Methods Enzymol 3:981–984
30.
Zurück zum Zitat Herbert D, Phipps PJ, Strange RE (1971) Chapter III chemical analysis of microbial cells. J Microbiol Methods 5:209–344 Herbert D, Phipps PJ, Strange RE (1971) Chapter III chemical analysis of microbial cells. J Microbiol Methods 5:209–344
31.
Zurück zum Zitat Ma, T., Zuazaga, G.: Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Ind. Eng. Chem., Anal. Ed.14, 280–282 (1942) Ma, T., Zuazaga, G.: Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Ind. Eng. Chem., Anal. Ed.14, 280–282 (1942)
32.
Zurück zum Zitat Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrog Energy 33:7397–7404 Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrog Energy 33:7397–7404
33.
Zurück zum Zitat Salerno MB, Park W, Zuo Y, Logan BE (2006) Inhibition of biohydrogen production by ammonia. Water Res 40:1167–1172 Salerno MB, Park W, Zuo Y, Logan BE (2006) Inhibition of biohydrogen production by ammonia. Water Res 40:1167–1172
34.
Zurück zum Zitat Mo Y, Jensen KF (2016) A miniature CSTR cascade for continuous flow of reactions containing solids. Reaction Chemistry & Engineering 1(5):501–507 Mo Y, Jensen KF (2016) A miniature CSTR cascade for continuous flow of reactions containing solids. Reaction Chemistry & Engineering 1(5):501–507
35.
Zurück zum Zitat Lee MJ, Zhang S, Cho YB, Park JE, Chang KH, Hwang SJ (2015) Effects of nitrate concentration on biohydrogen production and substrate utilization in dark-fermentation. J Mater Cycles Waste Manag 17(1):27–32 Lee MJ, Zhang S, Cho YB, Park JE, Chang KH, Hwang SJ (2015) Effects of nitrate concentration on biohydrogen production and substrate utilization in dark-fermentation. J Mater Cycles Waste Manag 17(1):27–32
36.
Zurück zum Zitat Cao X, Zhao Y (2009) The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J Mater Cycles Waste Manag 11(3):244–250 Cao X, Zhao Y (2009) The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J Mater Cycles Waste Manag 11(3):244–250
37.
Zurück zum Zitat Mohan SV, Devi MP (2012) Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol 123:627–635 Mohan SV, Devi MP (2012) Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol 123:627–635
38.
Zurück zum Zitat Ren HY, Liu BF, Kong F, Zhao L, Ren N (2015) Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Res 85:404–412 Ren HY, Liu BF, Kong F, Zhao L, Ren N (2015) Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Res 85:404–412
39.
Zurück zum Zitat Wang, J., Yin, Y.: Biohydrogen production from organic wastes. Springer (2017) Wang, J., Yin, Y.: Biohydrogen production from organic wastes. Springer (2017)
40.
Zurück zum Zitat Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacteraerogenes. Biotechnol Lett 20:143–147 Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacteraerogenes. Biotechnol Lett 20:143–147
41.
Zurück zum Zitat Panyaping K, Moontee P (2018) Potential of biogas production from mixed leaf and food waste in anaerobic reactors. J Mater Cycles Waste Manag 20(2):723–737 Panyaping K, Moontee P (2018) Potential of biogas production from mixed leaf and food waste in anaerobic reactors. J Mater Cycles Waste Manag 20(2):723–737
42.
Zurück zum Zitat Gong, Y., Lyu, Y., Li, P., Gong, D., Gao, Z., Chen, J., ... & Tian, Y.: Characterization of anaerobic digestion of Chinese cabbage waste by a thermophilic microorganism community. J. Mater. Cycles Waste Manag. 21(5), 1144–1154 (2019) Gong, Y., Lyu, Y., Li, P., Gong, D., Gao, Z., Chen, J., ... & Tian, Y.: Characterization of anaerobic digestion of Chinese cabbage waste by a thermophilic microorganism community. J. Mater. Cycles Waste Manag. 21(5), 1144–1154 (2019)
43.
Zurück zum Zitat Kim JR, Kim JY (2016) Feasibility assessment of thermophilic anaerobic digestion process of food waste. J Mater Cycles Waste Manag 18(3):413–418 Kim JR, Kim JY (2016) Feasibility assessment of thermophilic anaerobic digestion process of food waste. J Mater Cycles Waste Manag 18(3):413–418
44.
Zurück zum Zitat Moon M, Kim CW, Park WK, Yoo G, Choi YE, Yang JW (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2:352–357 Moon M, Kim CW, Park WK, Yoo G, Choi YE, Yang JW (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2:352–357
45.
Zurück zum Zitat Lin, X., Xiong, L., Qi, G., Shi, S., Huang, C., Chen,X.: Using butanol fermentation wastewater for bio-butanol production after removal of inhibitory compounds by micro-mesoporous hyper cross linked polymeric adsorbent.ACS Sustain Chem Eng. 3, 702–709 (2015) Lin, X., Xiong, L., Qi, G., Shi, S., Huang, C., Chen,X.: Using butanol fermentation wastewater for bio-butanol production after removal of inhibitory compounds by micro-mesoporous hyper cross linked polymeric adsorbent.ACS Sustain Chem Eng. 3, 702–709 (2015)
46.
Zurück zum Zitat Park GW, Fei Q, Jung K, Chang HN, Kim YC, Kim NJ, Choi JDR, Kim S, Cho J (2014) Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Biotechnol J 9:1536–1546 Park GW, Fei Q, Jung K, Chang HN, Kim YC, Kim NJ, Choi JDR, Kim S, Cho J (2014) Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Biotechnol J 9:1536–1546
47.
Zurück zum Zitat Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO 2 and flue gas-containing CO 2 by microalgae. Bioresour Technol 184:190–201 Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO 2 and flue gas-containing CO 2 by microalgae. Bioresour Technol 184:190–201
48.
Zurück zum Zitat Nguyen MLT, Lin CY, Lay CH (2019) Microalgae cultivation using biogas and digestate carbon sources. Biomass Bioenerg 122:426–432 Nguyen MLT, Lin CY, Lay CH (2019) Microalgae cultivation using biogas and digestate carbon sources. Biomass Bioenerg 122:426–432
49.
Zurück zum Zitat Prandini JM, Da Silva MLB, Mezzari MP, Pirolli M, Michelon W, Soares HM (2016) Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresour Technol 202:67–75 Prandini JM, Da Silva MLB, Mezzari MP, Pirolli M, Michelon W, Soares HM (2016) Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresour Technol 202:67–75
50.
Zurück zum Zitat Tan X, Chu H, Zhang Y, Yang L, Zhao F, Zhou X (2014) Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresour Technol 170:538–548 Tan X, Chu H, Zhang Y, Yang L, Zhao F, Zhou X (2014) Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresour Technol 170:538–548
51.
Zurück zum Zitat Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92(6):738–744 Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92(6):738–744
52.
Zurück zum Zitat Liu CH, Chang CY, Liao Q, Zhu X, Liao CF, Chang JS (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrog Energy 38:15807–15814 Liu CH, Chang CY, Liao Q, Zhu X, Liao CF, Chang JS (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrog Energy 38:15807–15814
53.
Zurück zum Zitat Chalima A, Hatzidaki A, Karnaouri A, Topakas E (2019) Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids. Appl Energy 241:130–138 Chalima A, Hatzidaki A, Karnaouri A, Topakas E (2019) Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids. Appl Energy 241:130–138
54.
Zurück zum Zitat Turon V, Trably E, Fayet A, Fouilland E, Steyer JP (2015) Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Res 12:119–125 Turon V, Trably E, Fayet A, Fouilland E, Steyer JP (2015) Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Res 12:119–125
55.
Zurück zum Zitat Banerjee S, Rout S, Banerjee S, Atta A, Das D (2019) Fe 2O 3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energ Convers Manage 195:844–853 Banerjee S, Rout S, Banerjee S, Atta A, Das D (2019) Fe 2O 3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energ Convers Manage 195:844–853
56.
Zurück zum Zitat Stewart, V.A.L.L.E.Y.: Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52, 190 (1988) Stewart, V.A.L.L.E.Y.: Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52, 190 (1988)
57.
Zurück zum Zitat Lauver L, Baker LA (2000) Mass balance for wastewater nitrogen in the central Arizona-Phoenix ecosystem. Water Res 34:2754–2760 Lauver L, Baker LA (2000) Mass balance for wastewater nitrogen in the central Arizona-Phoenix ecosystem. Water Res 34:2754–2760
58.
Zurück zum Zitat Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci 2:1275089 Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci 2:1275089
59.
Zurück zum Zitat Zimmo OR, Van der Steen NP, Gijzen HJ (2003) Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res 37:4587–4594 Zimmo OR, Van der Steen NP, Gijzen HJ (2003) Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res 37:4587–4594
60.
Zurück zum Zitat Sheets JP, Yang L, Ge X, Wang Z, Li Y (2015) Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. J Waste Manag 44:94–115 Sheets JP, Yang L, Ge X, Wang Z, Li Y (2015) Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. J Waste Manag 44:94–115
61.
Zurück zum Zitat Kalyuzhnyi S, Sklyar V, Fedorovich V, Kovalev A, Nozhevnikova A, Klapwijk A (1999) The development of biological methods for utilisation and treatment of diluted manure streams. Water Sci Technol 40:223–229 Kalyuzhnyi S, Sklyar V, Fedorovich V, Kovalev A, Nozhevnikova A, Klapwijk A (1999) The development of biological methods for utilisation and treatment of diluted manure streams. Water Sci Technol 40:223–229
62.
Zurück zum Zitat Mishra P, Roy S, Das D (2015) Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent. Bioresour Technol 198:593–602 Mishra P, Roy S, Das D (2015) Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent. Bioresour Technol 198:593–602
63.
Zurück zum Zitat Kumari S, Das D (2015) Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Bioresour Technol 194:354–363 Kumari S, Das D (2015) Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Bioresour Technol 194:354–363
64.
Zurück zum Zitat Cheng J, Xie B, Zhou J, Song W, Cen K (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrog Energy 35(7):3029–3035 Cheng J, Xie B, Zhou J, Song W, Cen K (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrog Energy 35(7):3029–3035
Metadaten
Titel
Sustainable approach for the treatment of poultry manure and starchy wastewater by integrating dark fermentation and microalgal cultivation
verfasst von
Rokesh Radhakrishnan
Sanjukta Banerjee
Srijoni Banerjee
Vaishali Singh
Debabrata Das
Publikationsdatum
19.01.2021
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 2/2021
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-021-01173-z

Weitere Artikel der Ausgabe 2/2021

Journal of Material Cycles and Waste Management 2/2021 Zur Ausgabe