Skip to main content

2021 | OriginalPaper | Buchkapitel

6. Sustainable Chemistry—Path and Goal for a More Sustainable Textile Sector

verfasst von : Lisa Keßler, Klaus Kümmerer

Erschienen in: Sustainable Textile and Fashion Value Chains

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter aims to portray the concepts of green chemistry (GC) and sustainable chemistry (SC) with regard to the textile sector and in response to the increasing challenges of the sector in terms of sustainability. It highlights potentials and pitfalls and offers concrete examples and practices of SC relevant for the textile industry. The textile sector is one of the most polluting industries in the world, contributing 20% to total industrial pollution of the water resources. In total, 5 billion kg of dyes, pigments and finishing chemicals are currently in use in the textile industry, adding up to more than 8000 different chemicals utilized for garment production. Moreover, extensive resource use (e.g., fossil fuels, processing chemicals, water etc.) in combination with unhealthy, exploitative working conditions pose a myriad of challenges involving all dimensions of sustainability. Once introduced into a process or product, chemicals and their products of unwanted side reactions and of incomplete mineralization in effluent treatment, so-called transformation products (TPs), are likely to remain a concern throughout the product’s lifecycle and even beyond. For example, textiles at their life’s end, so-called post-consumer textiles, still contain up to 90% of the chemicals that were initially introduced during manufacturing or finishing. This high amount of chemical residues on textiles (only partly washed out during laundry) is not only problematic in terms of resource use, but it is also an environmental threat. Residues are continuously released due to limitations in conventional wastewater treatment and form waste and dump sites affecting human health and well-being. The aforementioned sustainability issues arising during textile production, distribution, use and disposal are inextricably linked to societal and cultural systems. The complex, dynamic and highly intertwined nature of these sustainability challenges in the textile sector calls for both a focus on input prevention of chemicals and a strong normative premise of intentionally beneficial design of chemicals that are not harmful to the environment and human health. Sustainable chemistry has become an emerging concept in response to various sustainability challenges associated with the production, distribution, use and discharge of chemicals and products. It has been acknowledged by UNEP as an important cornerstone in achieving the Sustainable Development Goals (SDGs) and servers as a core concept within the Global Chemical Outlook II. Whilst green chemistry mainly addresses the synthesis of chemicals and some of their properties, SC reaches beyond the disciplinary boundaries of chemicals and their usage by a systems thinking approach. Being both a path and a goal, SC can act a beneficial umbrella concept for addressing the highly complex sustainability challenges regarding chemicals in the textile sector. Its specific potentials for the textile sector have not been studied hitherto and lie in its focus on input prevention, which influences not only production or wet processing of textiles, but the entire supply chain—including up- and downstream users—even beyond the product’s end of life. Practiced of SC within the textile industry addresses spatial as well as temporal scales, flows and dynamics of chemicals, materials and products and hence addresses drivers of highly complex and currently unsustainable practices. Specific examples and practices of SC within the textile sector will be described in-depth such as new business models (e.g. chemical leasing).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. New York: Oxford University Press. Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. New York: Oxford University Press.
Zurück zum Zitat Cathcart, C. (1990). Green chemistry in the Emerald Isle. Chemical Industries, 5, 94–104. Cathcart, C. (1990). Green chemistry in the Emerald Isle. Chemical Industries, 5, 94–104.
Zurück zum Zitat Centi, G., & Perathoner, S. (2009). From green to sustainable industrial chemistry. In F. Cavani, G. Centi, S. Perathoner, & F. Trifiró (Eds.), Sustainable industrial processes (pp. 1–69). Weinheim: Wiley-VCH. Centi, G., & Perathoner, S. (2009). From green to sustainable industrial chemistry. In F. Cavani, G. Centi, S. Perathoner, & F. Trifiró (Eds.), Sustainable industrial processes (pp. 1–69). Weinheim: Wiley-VCH.
Zurück zum Zitat Ehrenfeld, J. (2004). Searching for sustainability: No quick fix. Reflections: The SoL Journal, 5. Ehrenfeld, J. (2004). Searching for sustainability: No quick fix. Reflections: The SoL Journal, 5.
Zurück zum Zitat Haddad, T., Baginska, E., & Kümmerer, K. (2015). Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: An increasing challenge calling for higher emphasis on measures at the beginning of the pipe. Water Research, 72, 75–126. https://doi.org/10.1016/j.watres.2014.12.042.CrossRef Haddad, T., Baginska, E., & Kümmerer, K. (2015). Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: An increasing challenge calling for higher emphasis on measures at the beginning of the pipe. Water Research, 72, 75–126. https://​doi.​org/​10.​1016/​j.​watres.​2014.​12.​042.CrossRef
Zurück zum Zitat Haiß, A., Jordan, A., Westphal, J., Logunova, E., Gathergood, N., & Kümmerer, K. (2016). On the way to greener ionic liquids: Identification of a fully mineralizable phenylalanine-based ionic liquid. Green Chemistry, 18(16), 4361–4373. https://doi.org/10.1039/C6GC00417B.CrossRef Haiß, A., Jordan, A., Westphal, J., Logunova, E., Gathergood, N., & Kümmerer, K. (2016). On the way to greener ionic liquids: Identification of a fully mineralizable phenylalanine-based ionic liquid. Green Chemistry, 18(16), 4361–4373. https://​doi.​org/​10.​1039/​C6GC00417B.CrossRef
Zurück zum Zitat Kaiser, S. B. (2008). Mixing metaphors in the fiber, textiles and apparel complex: Moving toward a more sustainable fashion. In J. Hethorn & C. Ulasewicz (Eds.), Sustainable fashion: Why now? A conversation about issues, practices, and possibilities. (pp. 132–158). New York: Fairchild Books. Retrieved from https://doi.org/10.5040/9781501312250.ch-006. Kaiser, S. B. (2008). Mixing metaphors in the fiber, textiles and apparel complex: Moving toward a more sustainable fashion. In J. Hethorn & C. Ulasewicz (Eds.), Sustainable fashion: Why now? A conversation about issues, practices, and possibilities. (pp. 132–158). New York: Fairchild Books. Retrieved from https://​doi.​org/​10.​5040/​9781501312250.​ch-006.
Zurück zum Zitat Kümmerer, K. (2007). Sustainable from the very beginning: Rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chemistry, 9(8), 899. https://doi.org/10.1039/b618298b. Kümmerer, K. (2007). Sustainable from the very beginning: Rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chemistry, 9(8), 899. https://​doi.​org/​10.​1039/​b618298b.
Zurück zum Zitat Kümmerer, K. (2012). Drugs. In P. T. Anastas, R. Boethling, & A. Voutchkova (Eds.), Handbook of green chemistry—Green processes (Vol. 9, pp. 251–280)., Designing safer chemicals Weinheim: Wiley-VCH. Kümmerer, K. (2012). Drugs. In P. T. Anastas, R. Boethling, & A. Voutchkova (Eds.), Handbook of green chemistry—Green processes (Vol. 9, pp. 251–280)., Designing safer chemicals Weinheim: Wiley-VCH.
Zurück zum Zitat Kümmerer, K. (2016). Konzentration, Funktionalität und Dissipation - Grundkategorien zum Verständnis der Verfügbarkeit metallischer Rohstoffe. In A. Exner, M. Held, & K. Kümmerer (Eds.), Kritische Metalle in der Großen Transformation (pp. 53–86). Berlin: Springer.CrossRef Kümmerer, K. (2016). Konzentration, Funktionalität und Dissipation - Grundkategorien zum Verständnis der Verfügbarkeit metallischer Rohstoffe. In A. Exner, M. Held, & K. Kümmerer (Eds.), Kritische Metalle in der Großen Transformation (pp. 53–86). Berlin: Springer.CrossRef
Zurück zum Zitat Kümmerer, K., Menz, J., Schubert, T., Thielemans, W. (2011). Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere, 82(10), 1387–1392. Kümmerer, K., Menz, J., Schubert, T., Thielemans, W. (2011). Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere, 82(10), 1387–1392.
Zurück zum Zitat Le Marechal, A. M., Krianec, B., Vajnhandl, S., & Volmajer, J. (2012). Textile finishing industry as an important source of organic pollutants. In T. Puzyn (Ed.), Organic pollutants ten years after the stockholm convention—Environmental and analytical update (pp. 29–54). https://doi.org/10.5772/32272. Le Marechal, A. M., Krianec, B., Vajnhandl, S., & Volmajer, J. (2012). Textile finishing industry as an important source of organic pollutants. In T. Puzyn (Ed.), Organic pollutants ten years after the stockholm convention—Environmental and analytical update (pp. 29–54). https://​doi.​org/​10.​5772/​32272.
Zurück zum Zitat Rastogi, T., Leder, C., & Kümmerer, K. (2015). A sustainable chemistry solution to the presence of pharmaceuticals and chemicals in the aquatic environment—The example of re-designing β-blocker Atenolol. RSC Advances, 5(1), 27–32. https://doi.org/10.1039/C4RA10294K.CrossRef Rastogi, T., Leder, C., & Kümmerer, K. (2015). A sustainable chemistry solution to the presence of pharmaceuticals and chemicals in the aquatic environment—The example of re-designing β-blocker Atenolol. RSC Advances, 5(1), 27–32. https://​doi.​org/​10.​1039/​C4RA10294K.CrossRef
Zurück zum Zitat Richtlinie 96/61/EG. (1996). Amtblatt der Europäischen Gemeinschaften 26, Europäische Union. Richtlinie 96/61/EG. (1996). Amtblatt der Europäischen Gemeinschaften 26, Europäische Union.
Metadaten
Titel
Sustainable Chemistry—Path and Goal for a More Sustainable Textile Sector
verfasst von
Lisa Keßler
Klaus Kümmerer
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-22018-1_6