Skip to main content
Erschienen in: Meccanica 6/2016

09.10.2015

Swelling of thermo-responsive gels under hydrostatic pressure

verfasst von: A. D. Drozdov, P. Sommer-Larsen

Erschienen in: Meccanica | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A constitutive model is developed for the elastic behavior of a thermo-responsive gel subjected to swelling in a water bath to which hydrostatic pressure is applied. Material constants are found by fitting experimental data on poly(N-isopropylacrylamide) gel under unconstrained swelling. Good agreement is demonstrated between the observations and results of simulation. The effects of temperature and pressure on equilibrium water uptake are studied numerically.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRef van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRef
2.
Zurück zum Zitat Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533CrossRef Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533CrossRef
3.
Zurück zum Zitat Kano M, Kokufuta E (2009) On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides. Langmuir 25:8649–8655CrossRef Kano M, Kokufuta E (2009) On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides. Langmuir 25:8649–8655CrossRef
4.
Zurück zum Zitat Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162CrossRef Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162CrossRef
5.
Zurück zum Zitat Kamata H, Chung U, Shibayama M, Sakai T (2012) Anomalous volume phase transition in a polymer gel with alternative hydrophilic–amphiphilic sequence. Soft Matter 8:6876–6879CrossRef Kamata H, Chung U, Shibayama M, Sakai T (2012) Anomalous volume phase transition in a polymer gel with alternative hydrophilic–amphiphilic sequence. Soft Matter 8:6876–6879CrossRef
6.
Zurück zum Zitat Sasaki S, Koga S, Annaka M (2003) Salt effect on elastic properties of shrunken N-isopropylacrylamide gel. J. Phys Chem B 107:6893–6897CrossRef Sasaki S, Koga S, Annaka M (2003) Salt effect on elastic properties of shrunken N-isopropylacrylamide gel. J. Phys Chem B 107:6893–6897CrossRef
7.
Zurück zum Zitat Kamath G, Deshmukh SA, Baker GA, Mancini DC, Sankaranarayanan SKRS (2013) Thermodynamic considerations for solubility and conformational transitions of poly-N-isopropylacrylamide. Phys Chem Chem Phys 15:12667–12673CrossRef Kamath G, Deshmukh SA, Baker GA, Mancini DC, Sankaranarayanan SKRS (2013) Thermodynamic considerations for solubility and conformational transitions of poly-N-isopropylacrylamide. Phys Chem Chem Phys 15:12667–12673CrossRef
8.
Zurück zum Zitat Prange MM, Hooper HH, Pransnitz JM (1989) Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AIChE J 35:803–813CrossRef Prange MM, Hooper HH, Pransnitz JM (1989) Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AIChE J 35:803–813CrossRef
9.
Zurück zum Zitat Shenoy SL, Painter PC, Coleman MM (1999) The swelling and collapse of hydrogen bonded polymer gels. Polymer 40:4853–4863CrossRef Shenoy SL, Painter PC, Coleman MM (1999) The swelling and collapse of hydrogen bonded polymer gels. Polymer 40:4853–4863CrossRef
10.
Zurück zum Zitat Oliveira ED, Silva AFS, Freitas RFS (2004) Contributions to the thermodynamics of polymer hydrogel systems. Polymer 45:1287–1293CrossRef Oliveira ED, Silva AFS, Freitas RFS (2004) Contributions to the thermodynamics of polymer hydrogel systems. Polymer 45:1287–1293CrossRef
11.
Zurück zum Zitat Kojima H, Tanaka F (2010) Cooperative hydration induces discontinuous volume phase transition of cross-linked poly(N-isopropylacrylamide) gels in water. Macromolecules 43:5103–5113ADSCrossRef Kojima H, Tanaka F (2010) Cooperative hydration induces discontinuous volume phase transition of cross-linked poly(N-isopropylacrylamide) gels in water. Macromolecules 43:5103–5113ADSCrossRef
12.
Zurück zum Zitat Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823ADSCrossRef Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823ADSCrossRef
13.
Zurück zum Zitat Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218ADSCrossRef Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218ADSCrossRef
14.
Zurück zum Zitat Yoon Y, Cai S, Suo Z, Hayward RC (2010) Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter 6:6004–6012ADSCrossRef Yoon Y, Cai S, Suo Z, Hayward RC (2010) Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter 6:6004–6012ADSCrossRef
15.
Zurück zum Zitat Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z (2010) A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6:784–793ADSCrossRef Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z (2010) A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6:784–793ADSCrossRef
16.
Zurück zum Zitat Quesada-Perez M, Maroto-Centeno JA, Forcada J, Hidalgo-Alvarez R (2011) Gel swelling theories: the classical formalism and recent approaches. Soft Matter 7:10536–10547ADSCrossRef Quesada-Perez M, Maroto-Centeno JA, Forcada J, Hidalgo-Alvarez R (2011) Gel swelling theories: the classical formalism and recent approaches. Soft Matter 7:10536–10547ADSCrossRef
17.
Zurück zum Zitat Ji H, Mourad H, Fried E, Dolbow J (2005) Kinetics of thermally induced swelling of hydrogels. Int J Solids Struct 43:1878–1907CrossRefMATH Ji H, Mourad H, Fried E, Dolbow J (2005) Kinetics of thermally induced swelling of hydrogels. Int J Solids Struct 43:1878–1907CrossRefMATH
18.
Zurück zum Zitat Birgersson E, Li H, Wu S (2008) Transient analysis of temperature-sensitive neutral hydrogels. J Mech Phys Solids 56:444–466ADSCrossRefMATH Birgersson E, Li H, Wu S (2008) Transient analysis of temperature-sensitive neutral hydrogels. J Mech Phys Solids 56:444–466ADSCrossRefMATH
19.
Zurück zum Zitat Chester SA, Anand L (2011) A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J Mech Phys Solids 59:1978–2006ADSMathSciNetCrossRefMATH Chester SA, Anand L (2011) A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J Mech Phys Solids 59:1978–2006ADSMathSciNetCrossRefMATH
20.
Zurück zum Zitat Cai S, Suo Z (2011) Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J Mech Phys Solids 59:2259–2278ADSMathSciNetCrossRefMATH Cai S, Suo Z (2011) Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J Mech Phys Solids 59:2259–2278ADSMathSciNetCrossRefMATH
21.
Zurück zum Zitat Kurnia JC, Birgersson E, Mujumdar AS (2012) Finite deformation of fast-response thermo-sensitive hydrogels—a computational study. Polymer 53:2500–2508CrossRef Kurnia JC, Birgersson E, Mujumdar AS (2012) Finite deformation of fast-response thermo-sensitive hydrogels—a computational study. Polymer 53:2500–2508CrossRef
22.
Zurück zum Zitat Ding Z, Liu Z, Hu J, Swaddiwudhipong S, Yang Z (2013) Inhomogeneous large deformation study of temperature-sensitive hydrogel. Int J Solids Struct 50:2610–2619CrossRef Ding Z, Liu Z, Hu J, Swaddiwudhipong S, Yang Z (2013) Inhomogeneous large deformation study of temperature-sensitive hydrogel. Int J Solids Struct 50:2610–2619CrossRef
23.
Zurück zum Zitat Guo W, Li M, Zhou J (2013) Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater Struct 22:115028ADSCrossRef Guo W, Li M, Zhou J (2013) Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater Struct 22:115028ADSCrossRef
24.
Zurück zum Zitat Lian C, Zhi D, Xu S, Liu H, Hu Y (2013) A lattice model for thermally-sensitive core–shell hydrogels. J Colloid Interface Sci 406:148–153CrossRef Lian C, Zhi D, Xu S, Liu H, Hu Y (2013) A lattice model for thermally-sensitive core–shell hydrogels. J Colloid Interface Sci 406:148–153CrossRef
25.
Zurück zum Zitat Lee SM, Bae YC (2014) Swelling behaviors of doubly thermosensitive core–shell nanoparticle gels. Macromolecules 47:8394–8403ADSCrossRef Lee SM, Bae YC (2014) Swelling behaviors of doubly thermosensitive core–shell nanoparticle gels. Macromolecules 47:8394–8403ADSCrossRef
26.
Zurück zum Zitat Lian C, Zhi D, Han X, Zhao S, Xu S, Liu H (2015) A lattice molecular thermodynamic model for thermo-sensitive random copolymer hydrogels. Colloid Polym Sci 293:433–439CrossRef Lian C, Zhi D, Han X, Zhao S, Xu S, Liu H (2015) A lattice molecular thermodynamic model for thermo-sensitive random copolymer hydrogels. Colloid Polym Sci 293:433–439CrossRef
27.
Zurück zum Zitat Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710ADSCrossRef Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710ADSCrossRef
28.
Zurück zum Zitat Takigawa T, Araki H, Takahashi K, Masuda T (2000) Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels. J Chem Phys 113:7640–7645ADSCrossRef Takigawa T, Araki H, Takahashi K, Masuda T (2000) Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels. J Chem Phys 113:7640–7645ADSCrossRef
29.
Zurück zum Zitat Drozdov AD (2014) Swelling of thermo-responsive hydrogels. Eur Phys J E 37:93CrossRef Drozdov AD (2014) Swelling of thermo-responsive hydrogels. Eur Phys J E 37:93CrossRef
30.
Zurück zum Zitat Drozdov AD (2015) Volume phase transition in thermo-responsive hydrogels: constitutive modeling and structure–property relations. Acta Mech 226:1283–1303MathSciNetCrossRef Drozdov AD (2015) Volume phase transition in thermo-responsive hydrogels: constitutive modeling and structure–property relations. Acta Mech 226:1283–1303MathSciNetCrossRef
31.
Zurück zum Zitat Lee KK, Cussler EL, Marchetti M, McHugh MA (1990) Pressure-dependent phase transitions in hydrogels. Chem Eng Sci 45:766–767CrossRef Lee KK, Cussler EL, Marchetti M, McHugh MA (1990) Pressure-dependent phase transitions in hydrogels. Chem Eng Sci 45:766–767CrossRef
32.
Zurück zum Zitat Zhong X, Wang Y-X, Wang S-C (1996) Pressure dependence of the volume phase-transition of temperature-sensitive gels. Chem Eng Sci 51:3235–3239CrossRef Zhong X, Wang Y-X, Wang S-C (1996) Pressure dependence of the volume phase-transition of temperature-sensitive gels. Chem Eng Sci 51:3235–3239CrossRef
33.
Zurück zum Zitat Kato E, Kitada T, Nakamoto C (1993) Anomalous compressibility of N-isopropylacrylamide gels near the volume phase transition temperature. Macromolecules 26:1758–1760ADSCrossRef Kato E, Kitada T, Nakamoto C (1993) Anomalous compressibility of N-isopropylacrylamide gels near the volume phase transition temperature. Macromolecules 26:1758–1760ADSCrossRef
34.
Zurück zum Zitat Kato E (1997) Volume-phase transition of N-isopropylacrylamide gels induced by hydrostatic pressure. J Chem Phys 106:3792–3797ADSCrossRef Kato E (1997) Volume-phase transition of N-isopropylacrylamide gels induced by hydrostatic pressure. J Chem Phys 106:3792–3797ADSCrossRef
35.
Zurück zum Zitat Kato E (2005) Thermodynamic study of a pressure–temperature phase diagram for poly(N-isopropylacrylamide) gels. J Appl Polym Sci 97:405–412CrossRef Kato E (2005) Thermodynamic study of a pressure–temperature phase diagram for poly(N-isopropylacrylamide) gels. J Appl Polym Sci 97:405–412CrossRef
36.
Zurück zum Zitat Kunugi S, Takano K, Tanaka N, Suwa K, Akashi M (1997) Effects of pressure on the behavior of the thermoresponsive polymer poly(N-vinylisobutyramide) (PNVIBA). Macromolecules 30:4499–4501ADSCrossRef Kunugi S, Takano K, Tanaka N, Suwa K, Akashi M (1997) Effects of pressure on the behavior of the thermoresponsive polymer poly(N-vinylisobutyramide) (PNVIBA). Macromolecules 30:4499–4501ADSCrossRef
37.
Zurück zum Zitat Shibayama M, Isono K, Okabe S, Karino T, Nagao M (2004) SANS study on pressure-induced phase separation of poly(N-isopropylacrylamide) aqueous solutions and gels. Macromolecules 37:2909–2918ADSCrossRef Shibayama M, Isono K, Okabe S, Karino T, Nagao M (2004) SANS study on pressure-induced phase separation of poly(N-isopropylacrylamide) aqueous solutions and gels. Macromolecules 37:2909–2918ADSCrossRef
38.
Zurück zum Zitat Nasimova I, Karino T, Okabe S, Nagao M, Shibayama M (2004) Small-angle neutron scattering investigation of pressure influence on the structure of weakly charged poly(N-isopropylacrylamide) solutions and gels. Macromolecules 37:8721–8729ADSCrossRef Nasimova I, Karino T, Okabe S, Nagao M, Shibayama M (2004) Small-angle neutron scattering investigation of pressure influence on the structure of weakly charged poly(N-isopropylacrylamide) solutions and gels. Macromolecules 37:8721–8729ADSCrossRef
39.
Zurück zum Zitat Otake K, Karaki R, Ebina T, Yokoyama C, Takahashi S (1993) Pressure effects on the aggregation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) in aqueous solutions. Macromolecules 26:2194–2197ADSCrossRef Otake K, Karaki R, Ebina T, Yokoyama C, Takahashi S (1993) Pressure effects on the aggregation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) in aqueous solutions. Macromolecules 26:2194–2197ADSCrossRef
40.
Zurück zum Zitat Loozen E, Nies E, Heremans K, Berghmans H (2006) The influence of pressure on the lower critical solution temperature miscibility behavior of aqueous solutions of poly(vinyl methyl ether) and the relation to the compositional curvature of the volume of mixing. J Phys Chem B 110:7793–7802CrossRef Loozen E, Nies E, Heremans K, Berghmans H (2006) The influence of pressure on the lower critical solution temperature miscibility behavior of aqueous solutions of poly(vinyl methyl ether) and the relation to the compositional curvature of the volume of mixing. J Phys Chem B 110:7793–7802CrossRef
41.
Zurück zum Zitat Lietor-Santos JJ, Sierra-Martyn B, Gasser U, Fernandez-Nieves A (2011) The effect of hydrostatic pressure over the swelling of microgel particles. Soft Matter 7:6370–6374ADSCrossRef Lietor-Santos JJ, Sierra-Martyn B, Gasser U, Fernandez-Nieves A (2011) The effect of hydrostatic pressure over the swelling of microgel particles. Soft Matter 7:6370–6374ADSCrossRef
42.
Zurück zum Zitat Sierra-Martyn B, Laporte Y, South AB, Lyon LA, Fernandez-Nieves A (2011) Bulk modulus of poly(N-isopropylacrylamide) microgels through the swelling transition. Phys Rev E 84:011406ADSCrossRef Sierra-Martyn B, Laporte Y, South AB, Lyon LA, Fernandez-Nieves A (2011) Bulk modulus of poly(N-isopropylacrylamide) microgels through the swelling transition. Phys Rev E 84:011406ADSCrossRef
43.
Zurück zum Zitat Puhse M, Keerl M, Scherzinger C, Richtering W, Winter R (2010) Influence of pressure on the state of poly(N-isopropylacrylamide) and poly(N, N-diethylacrylamide) derived polymers in aqueous solution as probed by FTIR-spectroscopy. Polymer 51:3653–3659CrossRef Puhse M, Keerl M, Scherzinger C, Richtering W, Winter R (2010) Influence of pressure on the state of poly(N-isopropylacrylamide) and poly(N, N-diethylacrylamide) derived polymers in aqueous solution as probed by FTIR-spectroscopy. Polymer 51:3653–3659CrossRef
44.
Zurück zum Zitat Harmon ME, Jakob TAM, Knoll W, Frank CW (2002) A surface plasmon resonance study of volume phase transitions in N-isopropylacrylamide gel films. Macromolecules 35:5999–6004ADSCrossRef Harmon ME, Jakob TAM, Knoll W, Frank CW (2002) A surface plasmon resonance study of volume phase transitions in N-isopropylacrylamide gel films. Macromolecules 35:5999–6004ADSCrossRef
45.
Zurück zum Zitat Reinhardt M, Dzubiella J, Trapp M, Gutfreund P, Kreuzer M, Groschel AH, Muller AHE, Ballauff M, Steitz R (2013) Fine-tuning the structure of stimuli-responsive polymer films by hydrostatic pressure and temperature. Macromolecules 46:6541–6547ADSCrossRef Reinhardt M, Dzubiella J, Trapp M, Gutfreund P, Kreuzer M, Groschel AH, Muller AHE, Ballauff M, Steitz R (2013) Fine-tuning the structure of stimuli-responsive polymer films by hydrostatic pressure and temperature. Macromolecules 46:6541–6547ADSCrossRef
46.
Zurück zum Zitat Hirotsu S (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957ADSCrossRef Hirotsu S (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957ADSCrossRef
47.
Zurück zum Zitat Voudouris P, Florea D, van der Schoot P, Wyss HM (2013) Micromechanics of temperature sensitive microgels: dip in the Poisson ratio near the LCST. Soft Matter 9:7158–7166ADSCrossRef Voudouris P, Florea D, van der Schoot P, Wyss HM (2013) Micromechanics of temperature sensitive microgels: dip in the Poisson ratio near the LCST. Soft Matter 9:7158–7166ADSCrossRef
48.
Zurück zum Zitat Suzuki A, Sanda K, Omori Y (1997) Phase transition in strongly stretched polymer gels. J Chem Phys 107:5179–5185ADSCrossRef Suzuki A, Sanda K, Omori Y (1997) Phase transition in strongly stretched polymer gels. J Chem Phys 107:5179–5185ADSCrossRef
49.
Zurück zum Zitat Nakamoto C, Motonaga T, Shibayama M (2001) Preparation pressure dependence of structure inhomogeneities and dynamic fluctuations in poly(N-isopropylacrylamide) gels. Macromolecules 34:911–917ADSCrossRef Nakamoto C, Motonaga T, Shibayama M (2001) Preparation pressure dependence of structure inhomogeneities and dynamic fluctuations in poly(N-isopropylacrylamide) gels. Macromolecules 34:911–917ADSCrossRef
50.
Zurück zum Zitat Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 1. Theory. Macromolecules 23:1760–1765ADSCrossRef Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 1. Theory. Macromolecules 23:1760–1765ADSCrossRef
51.
Zurück zum Zitat Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 2. Experiments. Macromolecules 23:3445–3450ADSCrossRef Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 2. Experiments. Macromolecules 23:3445–3450ADSCrossRef
52.
Zurück zum Zitat Villanueva J, Huang Q, Sirbuly DJ (2014) Identification and design of novel polymer-based mechanical transducers: a nanostructural model for thin film indentation. J Appl Phys 116:104307ADSCrossRef Villanueva J, Huang Q, Sirbuly DJ (2014) Identification and design of novel polymer-based mechanical transducers: a nanostructural model for thin film indentation. J Appl Phys 116:104307ADSCrossRef
53.
Zurück zum Zitat Zhu X, Yang W, Hatzell MC, Logan BE (2014) Energy recovery from solutions with different salinities based on swelling and shrinking of hydrogels. Environ Sci Technol 48:7157–7163CrossRef Zhu X, Yang W, Hatzell MC, Logan BE (2014) Energy recovery from solutions with different salinities based on swelling and shrinking of hydrogels. Environ Sci Technol 48:7157–7163CrossRef
54.
Zurück zum Zitat Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 95:1552–1555ADSCrossRef Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 95:1552–1555ADSCrossRef
55.
Zurück zum Zitat Dias CL, Chan HS (2014) Pressure-dependent properties of elementary hydrophobic interactions: ramifications for activation properties of protein folding. J Phys Chem B 118:7488–7509CrossRef Dias CL, Chan HS (2014) Pressure-dependent properties of elementary hydrophobic interactions: ramifications for activation properties of protein folding. J Phys Chem B 118:7488–7509CrossRef
56.
Zurück zum Zitat Duda FP, Souza AC, Fried E (2010) A theory for species migration in a finitely strained solid with application to polymer network swelling. J Mech Phys Solids 58:515–529ADSMathSciNetCrossRefMATH Duda FP, Souza AC, Fried E (2010) A theory for species migration in a finitely strained solid with application to polymer network swelling. J Mech Phys Solids 58:515–529ADSMathSciNetCrossRefMATH
57.
Zurück zum Zitat Sierra-Martin B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernandez-Barbero A (2005) Microscopic signature of a microgel volume phase transition. Macromolecules 38:10782–10787ADSCrossRef Sierra-Martin B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernandez-Barbero A (2005) Microscopic signature of a microgel volume phase transition. Macromolecules 38:10782–10787ADSCrossRef
58.
Zurück zum Zitat Grobelny S, Hofmann CH, Erlkamp M, Plamper FA, Richtering W, Winter R (2013) Conformational changes upon high pressure induced hydration of poly(N-isopropylacrylamide) microgels. Soft Matter 9:5862–5866ADSCrossRef Grobelny S, Hofmann CH, Erlkamp M, Plamper FA, Richtering W, Winter R (2013) Conformational changes upon high pressure induced hydration of poly(N-isopropylacrylamide) microgels. Soft Matter 9:5862–5866ADSCrossRef
59.
Zurück zum Zitat Loeffel K, Anand L (2011) A chemo-thermo-mechanically coupled theory for elastic–viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast 27:1409–1431CrossRefMATH Loeffel K, Anand L (2011) A chemo-thermo-mechanically coupled theory for elastic–viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast 27:1409–1431CrossRefMATH
60.
Zurück zum Zitat Anand L (2012) A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J Mech Phys Solids 60:1983–2002ADSMathSciNetCrossRefMATH Anand L (2012) A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J Mech Phys Solids 60:1983–2002ADSMathSciNetCrossRefMATH
61.
Zurück zum Zitat Drozdov AD (2014) Self-oscillations of hydrogels driven by chemical reactions. Int J Appl Mech 6:1450023CrossRef Drozdov AD (2014) Self-oscillations of hydrogels driven by chemical reactions. Int J Appl Mech 6:1450023CrossRef
63.
Zurück zum Zitat Drozdov AD, Christiansen JC (2013) Constitutive equations in finite elasticity of swollen elastomers. Int J Solids Struct 50:1494–1504CrossRef Drozdov AD, Christiansen JC (2013) Constitutive equations in finite elasticity of swollen elastomers. Int J Solids Struct 50:1494–1504CrossRef
64.
Zurück zum Zitat Drozdov AD, Christiansen JC (2013) Stress–strain relations for hydrogels under multiaxial deformation. Int J Solids Struct 50:3570–3585CrossRef Drozdov AD, Christiansen JC (2013) Stress–strain relations for hydrogels under multiaxial deformation. Int J Solids Struct 50:3570–3585CrossRef
65.
Zurück zum Zitat Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526ADSCrossRef Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526ADSCrossRef
66.
Zurück zum Zitat Kato E (2005) Volume phase transition in poly(N-isopropylacrylamide) gels in sea water at high pressures. J Appl Polym Sci 95:1069–1072CrossRef Kato E (2005) Volume phase transition in poly(N-isopropylacrylamide) gels in sea water at high pressures. J Appl Polym Sci 95:1069–1072CrossRef
Metadaten
Titel
Swelling of thermo-responsive gels under hydrostatic pressure
verfasst von
A. D. Drozdov
P. Sommer-Larsen
Publikationsdatum
09.10.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 6/2016
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0300-3

Weitere Artikel der Ausgabe 6/2016

Meccanica 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.