Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Switchings Between Trajectory Tracking and Force Minimization in Human–Robot Collaboration

verfasst von : Yanan Li, Keng Peng Tee, Shuzhi Sam Ge

Erschienen in: Trends in Control and Decision-Making for Human–Robot Collaboration Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A framework of switchings between trajectory tracking and force minimization is proposed for human–robot collaboration through physical interactions. In particular, the robot is able to follow a predefined reference trajectory when there is no human intervention and the robot’s control objective is trajectory tracking; and the robot can be intervened by the human on the fly and moved to the human’s target position by applying an interaction force when the robot’s control objective is the minimization of the interaction force. Dynamic models of both the robot and the human are considered and their control objectives described. Switchings are realized by adaptation of the cost function. An optimal control problem is formulated to achieve the robot’s control objective, which is solved by employing dynamic programming. The validity of the proposed framework is verified through simulation studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Argall BD, Billard AG (2010) A survey of tactile human-robot interactions. Robot Auton Syst 58(10):1159–1176CrossRef Argall BD, Billard AG (2010) A survey of tactile human-robot interactions. Robot Auton Syst 58(10):1159–1176CrossRef
2.
Zurück zum Zitat Arimoto S (1990) Learning control theory for robotic motion. Int J Adapt Control Signal Process 4(6):543–564CrossRefMATH Arimoto S (1990) Learning control theory for robotic motion. Int J Adapt Control Signal Process 4(6):543–564CrossRefMATH
3.
Zurück zum Zitat Buerger SP, Hogan N (2007) Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans Robot 23(2):232–244CrossRef Buerger SP, Hogan N (2007) Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans Robot 23(2):232–244CrossRef
4.
Zurück zum Zitat Chipalkatty R, Droge G, Egerstedt MB (2013) Less is more: Mixed-initiative model-predictive control with human inputs. IEEE Trans Robot 29(3):695–703CrossRef Chipalkatty R, Droge G, Egerstedt MB (2013) Less is more: Mixed-initiative model-predictive control with human inputs. IEEE Trans Robot 29(3):695–703CrossRef
5.
Zurück zum Zitat Corteville B, Aertbelien E, Bruyninckx H, De Schutter J, Van Brussel H (2007) Human-inspired robot assistant for fast point-to-point movements. In: IEEE international conference on robotics automation. Roma, Italy, pp 3639–3644 Corteville B, Aertbelien E, Bruyninckx H, De Schutter J, Van Brussel H (2007) Human-inspired robot assistant for fast point-to-point movements. In: IEEE international conference on robotics automation. Roma, Italy, pp 3639–3644
6.
Zurück zum Zitat Duchaine V, Gosselin C (2009) Safe, stable and intuitive control for physical human-robot interaction. In: IEEE International conference on robotics and automation, pp 3676–3681 Duchaine V, Gosselin C (2009) Safe, stable and intuitive control for physical human-robot interaction. In: IEEE International conference on robotics and automation, pp 3676–3681
7.
Zurück zum Zitat Erden MS, Tomiyama T (2010) Human-intent detection and physically interactive control of a robot without force sensors. IEEE Trans Robot 26(2):370–382CrossRef Erden MS, Tomiyama T (2010) Human-intent detection and physically interactive control of a robot without force sensors. IEEE Trans Robot 26(2):370–382CrossRef
8.
Zurück zum Zitat Evrard P, Kheddar A (2009) Homotopy switching model for dyad haptic interaction in physical collaborative tasks. In: 3rd joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. Salt Lake City, Utah, USA, pp 45–50 Evrard P, Kheddar A (2009) Homotopy switching model for dyad haptic interaction in physical collaborative tasks. In: 3rd joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. Salt Lake City, Utah, USA, pp 45–50
9.
Zurück zum Zitat Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenace of a steady posture, ii: Controllable parameters of the muscles. Biophysics 11:565–578 Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenace of a steady posture, ii: Controllable parameters of the muscles. Biophysics 11:565–578
10.
Zurück zum Zitat Ganesh G, Albu-Schaeffer A, Haruno M, Kawato M, Burdet E (2010) Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Anchorage, Alaska, USA, pp 2705–2711 Ganesh G, Albu-Schaeffer A, Haruno M, Kawato M, Burdet E (2010) Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Anchorage, Alaska, USA, pp 2705–2711
11.
Zurück zum Zitat Ganesh G, Jarrasse N, Haddadin S, Albu-Schaeffer A, Burdet E (2012) A versatile biomimetic controller for contact tooling and haptic exploration. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3329–3334 Ganesh G, Jarrasse N, Haddadin S, Albu-Schaeffer A, Burdet E (2012) A versatile biomimetic controller for contact tooling and haptic exploration. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3329–3334
12.
13.
Zurück zum Zitat Hogan N (1985) Impedance control: an approach to manipulation-Part I: Theory; Part II: Implementation; Part III: Applications. Trans ASME J Dyn Syst Meas Control 107(1):1–24CrossRef Hogan N (1985) Impedance control: an approach to manipulation-Part I: Theory; Part II: Implementation; Part III: Applications. Trans ASME J Dyn Syst Meas Control 107(1):1–24CrossRef
14.
Zurück zum Zitat Jarrasse N, Sanguineti V, Burdet E (2014) Slaves no longer: review on role assignment for human-robot joint motor action. Adapt Behav 22(1):70–82CrossRef Jarrasse N, Sanguineti V, Burdet E (2014) Slaves no longer: review on role assignment for human-robot joint motor action. Adapt Behav 22(1):70–82CrossRef
15.
Zurück zum Zitat Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst Mag 9(3):32–50CrossRef Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst Mag 9(3):32–50CrossRef
16.
Zurück zum Zitat Lewis FL, Vrabie D, Vamvoudakis KG (2012) Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Circuits Syst Mag 32(6):76–105MathSciNet Lewis FL, Vrabie D, Vamvoudakis KG (2012) Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Circuits Syst Mag 32(6):76–105MathSciNet
17.
Zurück zum Zitat Li Y, Ge SS (2014) Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron 19(3):1007–1014 Li Y, Ge SS (2014) Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron 19(3):1007–1014
18.
Zurück zum Zitat Li Y, Ge SS (2016) Force tracking control for motion synchronization in human-robot collaboration. Robotica 34(06):1260–1281 Li Y, Ge SS (2016) Force tracking control for motion synchronization in human-robot collaboration. Robotica 34(06):1260–1281
19.
Zurück zum Zitat Li Y, Tee KP, Chan WL, Yan R, Chua Y, Limbu DK (2015a) Continuous role adaptation for human-robot shared control. IEEE Trans Robot 31(3):672–681CrossRef Li Y, Tee KP, Chan WL, Yan R, Chua Y, Limbu DK (2015a) Continuous role adaptation for human-robot shared control. IEEE Trans Robot 31(3):672–681CrossRef
20.
Zurück zum Zitat Li Y, Tee KP, Yan R, Limbu DK, Ge SS (2015) Shared control of human and robot by approximate dynamic programming. In: Proceedings of the 2015 American control conference (ACC). IL, USA, Chicago, pp 1167–1172 Li Y, Tee KP, Yan R, Limbu DK, Ge SS (2015) Shared control of human and robot by approximate dynamic programming. In: Proceedings of the 2015 American control conference (ACC). IL, USA, Chicago, pp 1167–1172
21.
Zurück zum Zitat Liu D, Huang Y, Wang D, Wei Q (2013) Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming. Int J Control 86(9):1554–1566MathSciNetCrossRefMATH Liu D, Huang Y, Wang D, Wei Q (2013) Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming. Int J Control 86(9):1554–1566MathSciNetCrossRefMATH
22.
Zurück zum Zitat Medina JR, Lawitzky M, Mortl A, Lee D, Hirche S (2011) An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2416–2422 Medina JR, Lawitzky M, Mortl A, Lee D, Hirche S (2011) An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2416–2422
23.
Zurück zum Zitat Mortl A, Lawitzky M, Kucukyilmaz A, Sezgin M, Basdogan C, Hirche S (2012) The role of roles: physical cooperation between humans and robots. Int J Robot Res 31(13):1656–1674CrossRef Mortl A, Lawitzky M, Kucukyilmaz A, Sezgin M, Basdogan C, Hirche S (2012) The role of roles: physical cooperation between humans and robots. Int J Robot Res 31(13):1656–1674CrossRef
24.
Zurück zum Zitat Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5(10):2732–2743 Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5(10):2732–2743
25.
Zurück zum Zitat Passenberg C, Stefanov N, Peer A, Buss M (2011) Enhancing task classification in human-machine collaborative teleoperation systems by real-time evaluation of an agreement criterion. In: IEEE world haptics conference, pp 493–498 Passenberg C, Stefanov N, Peer A, Buss M (2011) Enhancing task classification in human-machine collaborative teleoperation systems by real-time evaluation of an agreement criterion. In: IEEE world haptics conference, pp 493–498
26.
Zurück zum Zitat Slotine JJE, Li W (1987) On the adaptive control of robotic manipulators. Int J Robot Res 6(3):1 Slotine JJE, Li W (1987) On the adaptive control of robotic manipulators. Int J Robot Res 6(3):1
27.
Zurück zum Zitat Tsuji T, Morasso PG, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture. Biol Cybern 72(6):475–485CrossRefMATH Tsuji T, Morasso PG, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture. Biol Cybern 72(6):475–485CrossRefMATH
28.
Zurück zum Zitat Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: IEEE international conference on robotics and automation. DC, USA, Washington, pp 644–650 Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: IEEE international conference on robotics and automation. DC, USA, Washington, pp 644–650
29.
Zurück zum Zitat Wakita K, Huang J, Di P, Sekiyama K, Fukuda T (2013) Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans Mechatron 18(1):285–296CrossRef Wakita K, Huang J, Di P, Sekiyama K, Fukuda T (2013) Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans Mechatron 18(1):285–296CrossRef
30.
Zurück zum Zitat Werbos PJ (2009) Intelligence in the brain: a theory of how it works and how to build it. Neural Netw 22(3):200–212CrossRef Werbos PJ (2009) Intelligence in the brain: a theory of how it works and how to build it. Neural Netw 22(3):200–212CrossRef
31.
Zurück zum Zitat Yang C, Ganesh G, Haddadin S, Parusel S, Albu-Schaeffer A, Burdet E (2011) Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans Robot 27(5):918–930CrossRef Yang C, Ganesh G, Haddadin S, Parusel S, Albu-Schaeffer A, Burdet E (2011) Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans Robot 27(5):918–930CrossRef
Metadaten
Titel
Switchings Between Trajectory Tracking and Force MinimizationForce minimization in Human–Robot CollaborationHuman-robot collaboration (HRC)
verfasst von
Yanan Li
Keng Peng Tee
Shuzhi Sam Ge
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-40533-9_4

Neuer Inhalt