Skip to main content
Erschienen in:

25.07.2023

Symmetric Bases for Finite Element Exterior Calculus Spaces

verfasst von: Yakov Berchenko-Kogan

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In 2006, Arnold, Falk, and Winther developed finite element exterior calculus, using the language of differential forms to generalize the Lagrange, Raviart–Thomas, Brezzi–Douglas–Marini, and Nédélec finite element spaces for simplicial triangulations. In a recent paper, Licht asks whether, on a single simplex, one can construct bases for these spaces that are invariant with respect to permuting the vertices of the simplex. For scalar fields, standard bases all have this symmetry property, but for vector fields, this question is more complicated: Such invariant bases may or may not exist, depending on the polynomial degree of the element. In dimensions two and three, Licht constructs such invariant bases for certain values of the polynomial degree r, and he conjectures that his list is complete, that is, that no such basis exists for other values of r. In this paper, we show that Licht’s conjecture is true in dimension two. However, in dimension three, we show that Licht’s ideas can be extended to give invariant bases for many more values of r; we then show that this new larger list is complete. Along the way, we develop a more general framework for the geometric decomposition ideas of Arnold, Falk, and Winther.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D. N. Arnold, Spaces of finite element differential forms, in Analysis and Numerics of Partial Differential Equations, vol. 4 of Springer INdAM Ser., Springer, Milan, 2013, pp. 117–140. D. N. Arnold, Spaces of finite element differential forms, in Analysis and Numerics of Partial Differential Equations, vol. 4 of Springer INdAM Ser., Springer, Milan, 2013, pp. 117–140.
2.
Zurück zum Zitat D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1–155.MathSciNetCrossRef D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1–155.MathSciNetCrossRef
3.
Zurück zum Zitat D. N. Arnold, R. S. Falk, and R. Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1660–1672.MathSciNetCrossRef D. N. Arnold, R. S. Falk, and R. Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1660–1672.MathSciNetCrossRef
4.
Zurück zum Zitat D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47 (2010), pp. 281–354. D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47 (2010), pp. 281–354.
5.
Zurück zum Zitat Y. Berchenko-Kogan, Duality in finite element exterior calculus and Hodge duality on the sphere, Found. Comput. Math., 21 (2021), pp. 1153–1180. https://rdcu.be/cdSpS. Y. Berchenko-Kogan, Duality in finite element exterior calculus and Hodge duality on the sphere, Found. Comput. Math., 21 (2021), pp. 1153–1180. https://​rdcu.​be/​cdSpS.
6.
Zurück zum Zitat F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.MathSciNetCrossRef F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.MathSciNetCrossRef
7.
Zurück zum Zitat C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, 1962. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, 1962.
8.
Zurück zum Zitat W. Fulton and J. Harris, Representation Theory: A First Course, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991. W. Fulton and J. Harris, Representation Theory: A First Course, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991.
9.
Zurück zum Zitat A. N. Hirani, Discrete exterior calculus, 2003. Thesis (Ph.D.)–California Institute of Technology. A. N. Hirani, Discrete exterior calculus, 2003. Thesis (Ph.D.)–California Institute of Technology.
11.
Zurück zum Zitat M. W. Licht, On basis constructions in finite element exterior calculus, Adv. Comput. Math., 48 (2022), pp. Paper No. 14, 36. M. W. Licht, On basis constructions in finite element exterior calculus, Adv. Comput. Math., 48 (2022), pp. Paper No. 14, 36.
12.
Zurück zum Zitat J.-C. Nédélec, Mixed finite elements in\({\mathbb{R}}^{3}\), Numer. Math., 35 (1980), pp. 315–341. J.-C. Nédélec, Mixed finite elements in\({\mathbb{R}}^{3}\), Numer. Math., 35 (1980), pp. 315–341.
13.
Zurück zum Zitat J.-C. Nédélec, A new family of mixed finite elements in\({\mathbb{R}}^{3}\), Numer. Math., 50 (1986), pp. 57–81. J.-C. Nédélec, A new family of mixed finite elements in\({\mathbb{R}}^{3}\), Numer. Math., 50 (1986), pp. 57–81.
14.
Zurück zum Zitat P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, (1977), pp. 292–315. Lecture Notes in Math., Vol. 606. P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, (1977), pp. 292–315. Lecture Notes in Math., Vol. 606.
15.
Zurück zum Zitat J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott.
16.
Zurück zum Zitat H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, N. J., 1957.CrossRef H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, N. J., 1957.CrossRef
Metadaten
Titel
Symmetric Bases for Finite Element Exterior Calculus Spaces
verfasst von
Yakov Berchenko-Kogan
Publikationsdatum
25.07.2023
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2024
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-023-09617-8