Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2018

15.03.2018

Synaptic efficacy shapes resource limitations in working memory

verfasst von: Nikhil Krishnan, Daniel B. Poll, Zachary P. Kilpatrick

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Working memory (WM) is limited in its temporal length and capacity. Classic conceptions of WM capacity assume the system possesses a finite number of slots, but recent evidence suggests WM may be a continuous resource. Resource models typically assume there is no hard upper bound on the number of items that can be stored, but WM fidelity decreases with the number of items. We analyze a neural field model of multi-item WM that associates each item with the location of a bump in a finite spatial domain, considering items that span a one-dimensional continuous feature space. Our analysis relates the neural architecture of the network to accumulated errors and capacity limitations arising during the delay period of a multi-item WM task. Networks with stronger synapses support wider bumps that interact more, whereas networks with weaker synapses support narrower bumps that are more susceptible to noise perturbations. There is an optimal synaptic strength that both limits bump interaction events and the effects of noise perturbations. This optimum shifts to weaker synapses as the number of items stored in the network is increased. Our model not only provides a circuit-based explanation for WM capacity, but also speaks to how capacity relates to the arrangement of stored items in a feature space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Almeida, R., Barbosa, J., Compte, A. (2015). Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study. Journal of Neurophysiology, 114(3), 1806–1818.CrossRefPubMedPubMedCentral Almeida, R., Barbosa, J., Compte, A. (2015). Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study. Journal of Neurophysiology, 114(3), 1806–1818.CrossRefPubMedPubMedCentral
Zurück zum Zitat Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.CrossRefPubMed Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.CrossRefPubMed
Zurück zum Zitat Amari, S. (2014). Heaviside world: excitation and self-organization of neural fields. In Neural fields (pp. 97–118). Springer. Amari, S. (2014). Heaviside world: excitation and self-organization of neural fields. In Neural fields (pp. 97–118). Springer.
Zurück zum Zitat Avitabile, D., Desroches, M., Knobloch, E. (2017). Spatiotemporal canards in neural field equations. Physical Review E, 95(4), 042,205.CrossRef Avitabile, D., Desroches, M., Knobloch, E. (2017). Spatiotemporal canards in neural field equations. Physical Review E, 95(4), 042,205.CrossRef
Zurück zum Zitat Barak, O., & Tsodyks, M. (2014). Working models of working memory. Current Opinion in Neurobiology, 25, 20–24.CrossRefPubMed Barak, O., & Tsodyks, M. (2014). Working models of working memory. Current Opinion in Neurobiology, 25, 20–24.CrossRefPubMed
Zurück zum Zitat Bays, P.M. (2015). Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Sciences, 19(8), 431–438.CrossRefPubMed Bays, P.M. (2015). Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Sciences, 19(8), 431–438.CrossRefPubMed
Zurück zum Zitat Bays, P.M., Catalao, R.F., Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7–7.CrossRefPubMedPubMedCentral Bays, P.M., Catalao, R.F., Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7–7.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bressloff, P.C. (2005). Weakly interacting pulses in synaptically coupled neural media. SIAM Journal on Applied Mathematics, 66(1), 57–81.CrossRef Bressloff, P.C. (2005). Weakly interacting pulses in synaptically coupled neural media. SIAM Journal on Applied Mathematics, 66(1), 57–81.CrossRef
Zurück zum Zitat Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef
Zurück zum Zitat Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 33,001–33,109.CrossRef Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 33,001–33,109.CrossRef
Zurück zum Zitat Bressloff, P.C., & Kilpatrick, Z.P. (2015). Nonlinear langevin equations for wandering patterns in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 14(1), 305–334.CrossRef Bressloff, P.C., & Kilpatrick, Z.P. (2015). Nonlinear langevin equations for wandering patterns in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 14(1), 305–334.CrossRef
Zurück zum Zitat Bressloff, P.C., & Webber, M.A. (2012). Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 11(2), 708–740.CrossRef Bressloff, P.C., & Webber, M.A. (2012). Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 11(2), 708–740.CrossRef
Zurück zum Zitat Burak, Y., & Fiete, I.R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. Proceedings of the National Academy of Sciences, 109(43), 17,645–17,650.CrossRef Burak, Y., & Fiete, I.R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. Proceedings of the National Academy of Sciences, 109(43), 17,645–17,650.CrossRef
Zurück zum Zitat Buschman, T.J., Siegel, M., Roy, J.E., Miller, E.K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108(27), 11,252–11,255.CrossRef Buschman, T.J., Siegel, M., Roy, J.E., Miller, E.K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108(27), 11,252–11,255.CrossRef
Zurück zum Zitat Carroll, S., Josic, K., Kilpatrick, Z. (2014). Encoding certainty in bump attractors. Journal of Computational Neuroscience, 37(1), 29–48.CrossRefPubMed Carroll, S., Josic, K., Kilpatrick, Z. (2014). Encoding certainty in bump attractors. Journal of Computational Neuroscience, 37(1), 29–48.CrossRefPubMed
Zurück zum Zitat Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.CrossRefPubMed Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.CrossRefPubMed
Zurück zum Zitat Constantinidis, C., & Klingberg, T. (2016). The neuroscience of working memory capacity and training. Nature Reviews Neuroscience, 17(7), 438–449.CrossRefPubMed Constantinidis, C., & Klingberg, T. (2016). The neuroscience of working memory capacity and training. Nature Reviews Neuroscience, 17(7), 438–449.CrossRefPubMed
Zurück zum Zitat Coombes, S., & Laing, C. (2011). Pulsating fronts in periodically modulated neural field models. Physical Review E, 83(1), 011,912.CrossRef Coombes, S., & Laing, C. (2011). Pulsating fronts in periodically modulated neural field models. Physical Review E, 83(1), 011,912.CrossRef
Zurück zum Zitat Coombes, S., & Owen, M.R. (2005). Bumps, breathers, and waves in a neural network with spike frequency adaptation. Physical Review Letters, 94(14), 148,102.CrossRef Coombes, S., & Owen, M.R. (2005). Bumps, breathers, and waves in a neural network with spike frequency adaptation. Physical Review Letters, 94(14), 148,102.CrossRef
Zurück zum Zitat Coombes, S., & Schmidt, H. (2010). Neural fields with sigmoidal firing rates: approximate solutions. Discrete and Continuous Dynamical Systems Series 28, 1369–1379. Coombes, S., & Schmidt, H. (2010). Neural fields with sigmoidal firing rates: approximate solutions. Discrete and Continuous Dynamical Systems Series 28, 1369–1379.
Zurück zum Zitat Coombes, S., Schmidt, H., Bojak, I. (2012). Interface dynamics in planar neural field models. The Journal of Mathematical Neuroscience, 2(1), 9.CrossRefPubMed Coombes, S., Schmidt, H., Bojak, I. (2012). Interface dynamics in planar neural field models. The Journal of Mathematical Neuroscience, 2(1), 9.CrossRefPubMed
Zurück zum Zitat Cowan, N. (2010). The magical mystery four: how is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 51–57.CrossRefPubMedPubMedCentral Cowan, N. (2010). The magical mystery four: how is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 51–57.CrossRefPubMedPubMedCentral
Zurück zum Zitat Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences, 106(16), 6802–6807.CrossRef Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences, 106(16), 6802–6807.CrossRef
Zurück zum Zitat Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61(4), 353.CrossRef Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61(4), 353.CrossRef
Zurück zum Zitat Folias, S., & Ermentrout, G. (2011). New patterns of activity in a pair of interacting excitatory-inhibitory neural fields. Physical Review Letters, 107(22), 228,103.CrossRef Folias, S., & Ermentrout, G. (2011). New patterns of activity in a pair of interacting excitatory-inhibitory neural fields. Physical Review Letters, 107(22), 228,103.CrossRef
Zurück zum Zitat Funahashi, S., Bruce, C.J., Goldman-Rakic, P.S. (1989). Mnemonic coding of visual space in the monkey9s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.CrossRefPubMed Funahashi, S., Bruce, C.J., Goldman-Rakic, P.S. (1989). Mnemonic coding of visual space in the monkey9s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.CrossRefPubMed
Zurück zum Zitat Gardiner, C. (2009). Handbook of stochastic methods, Vol. 4, Springer, Berlin. Gardiner, C. (2009). Handbook of stochastic methods, Vol. 4, Springer, Berlin.
Zurück zum Zitat Gazzaley, A., & Nobre, A.C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.CrossRefPubMed Gazzaley, A., & Nobre, A.C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.CrossRefPubMed
Zurück zum Zitat Gökçe, A., Avitabile, D., Coombes, S. (2017). The dynamics of neural fields on bounded domains: an interface approach for dirichlet boundary conditions. Journal of Mathematical Neuroscience, 7(1), 1–12.CrossRef Gökçe, A., Avitabile, D., Coombes, S. (2017). The dynamics of neural fields on bounded domains: an interface approach for dirichlet boundary conditions. Journal of Mathematical Neuroscience, 7(1), 1–12.CrossRef
Zurück zum Zitat Gorgoraptis, N., Catalao, R.F., Bays, P.M., Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31(23), 8502–8511.CrossRefPubMedPubMedCentral Gorgoraptis, N., Catalao, R.F., Bays, P.M., Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31(23), 8502–8511.CrossRefPubMedPubMedCentral
Zurück zum Zitat Guo, Y., & Chow, C.C. (2005). Existence and stability of standing pulses in neural networks: II. Stability. SIAM Journal on Applied Dynamical Systems, 4(2), 249–281.CrossRef Guo, Y., & Chow, C.C. (2005). Existence and stability of standing pulses in neural networks: II. Stability. SIAM Journal on Applied Dynamical Systems, 4(2), 249–281.CrossRef
Zurück zum Zitat Ikkai, A., & Curtis, C.E. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49(6), 1428–1434.CrossRefPubMed Ikkai, A., & Curtis, C.E. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49(6), 1428–1434.CrossRefPubMed
Zurück zum Zitat Keshvari, S., Van den Berg, R., Ma, W.J. (2013). No evidence for an item limit in change detection. PLoS Computational Biology, 9(2), e1002,927.CrossRef Keshvari, S., Van den Berg, R., Ma, W.J. (2013). No evidence for an item limit in change detection. PLoS Computational Biology, 9(2), e1002,927.CrossRef
Zurück zum Zitat Kilpatrick, Z.P. (2013). Interareal coupling reduces encoding variability in multi-area models of spatial working memory. Frontiers in Computational Neuroscience, 7(82), 1–14. Kilpatrick, Z.P. (2013). Interareal coupling reduces encoding variability in multi-area models of spatial working memory. Frontiers in Computational Neuroscience, 7(82), 1–14.
Zurück zum Zitat Kilpatrick, Z.P. (2016). Ghosts of bump attractors in stochastic neural fields: Bottlenecks and extinction. Discrete Contin Dyn Syst Ser B, 21, 2211–2231.CrossRef Kilpatrick, Z.P. (2016). Ghosts of bump attractors in stochastic neural fields: Bottlenecks and extinction. Discrete Contin Dyn Syst Ser B, 21, 2211–2231.CrossRef
Zurück zum Zitat Kilpatrick, Z.P. (2017). Synaptic mechanisms of interference in working memory. bioRxiv 149435. Kilpatrick, Z.P. (2017). Synaptic mechanisms of interference in working memory. bioRxiv 149435.
Zurück zum Zitat Kilpatrick, Z.P., & Ermentrout, B. (2013). Wandering bumps in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 12(1), 61–94.CrossRef Kilpatrick, Z.P., & Ermentrout, B. (2013). Wandering bumps in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 12(1), 61–94.CrossRef
Zurück zum Zitat Kilpatrick, Z.P., Ermentrout, B., Doiron, B. (2013). Optimizing working memory with heterogeneity of recurrent cortical excitation. The Journal of Neuroscience, 33(48), 18,999–19,011.CrossRef Kilpatrick, Z.P., Ermentrout, B., Doiron, B. (2013). Optimizing working memory with heterogeneity of recurrent cortical excitation. The Journal of Neuroscience, 33(48), 18,999–19,011.CrossRef
Zurück zum Zitat Laing, C.R., & Troy, W.C. (2003a). Pde methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2(3), 487–516. Laing, C.R., & Troy, W.C. (2003a). Pde methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2(3), 487–516.
Zurück zum Zitat Laing, C.R., & Troy, W.C. (2003b). Two-bump solutions of amari-type models of neuronal pattern formation. Physica D: Nonlinear Phenomena, 178(3), 190–218. Laing, C.R., & Troy, W.C. (2003b). Two-bump solutions of amari-type models of neuronal pattern formation. Physica D: Nonlinear Phenomena, 178(3), 190–218.
Zurück zum Zitat Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B. (2002). Multiple bumps in a neuronal model of working memory. SIAM Journal on Applied Mathematics, 63(1), 62–97.CrossRef Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B. (2002). Multiple bumps in a neuronal model of working memory. SIAM Journal on Applied Mathematics, 63(1), 62–97.CrossRef
Zurück zum Zitat Lara, A.H., & Wallis, J.D. (2012). Capacity and precision in an animal model of visual short-term memory. Journal of Vision, 12(3), 13–13.CrossRefPubMed Lara, A.H., & Wallis, J.D. (2012). Capacity and precision in an animal model of visual short-term memory. Journal of Vision, 12(3), 13–13.CrossRefPubMed
Zurück zum Zitat Lim, S., & Goldman, M.S. (2014). Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. Journal of Neuroscience, 34(20), 6790–6806.CrossRefPubMedPubMedCentral Lim, S., & Goldman, M.S. (2014). Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. Journal of Neuroscience, 34(20), 6790–6806.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lu, Y., Sato, Y., Si, Amari. (2011). Traveling bumps and their collisions in a two-dimensional neural field. Neural Computation, 23(5), 1248–1260.CrossRefPubMed Lu, Y., Sato, Y., Si, Amari. (2011). Traveling bumps and their collisions in a two-dimensional neural field. Neural Computation, 23(5), 1248–1260.CrossRefPubMed
Zurück zum Zitat Luck, S.J., & Vogel, E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279.CrossRefPubMed Luck, S.J., & Vogel, E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279.CrossRefPubMed
Zurück zum Zitat Luck, S.J., & Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391–400.CrossRefPubMedPubMedCentral Luck, S.J., & Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391–400.CrossRefPubMedPubMedCentral
Zurück zum Zitat Macoveanu, J., Klingberg, T., Tegnér, J. (2006). A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience, 141(3), 1611–1618.CrossRefPubMed Macoveanu, J., Klingberg, T., Tegnér, J. (2006). A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience, 141(3), 1611–1618.CrossRefPubMed
Zurück zum Zitat Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78–84.CrossRefPubMedPubMedCentral Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78–84.CrossRefPubMedPubMedCentral
Zurück zum Zitat Murray, J.D., Bernacchia, A., Roy, N.A., Constantinidis, C., Romo, R., Wang, X.J. (2017). Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. In Proceedings of the National Academy of Sciences, (Vol 114, No. 2, pp. 394–399). Murray, J.D., Bernacchia, A., Roy, N.A., Constantinidis, C., Romo, R., Wang, X.J. (2017). Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. In Proceedings of the National Academy of Sciences, (Vol 114, No. 2, pp. 394–399).
Zurück zum Zitat Novikov, E.A. (1965). Functionals and the random-force method in turbulence theory. Soviet Physics – JETP, 20(5), 1290–1294. Novikov, E.A. (1965). Functionals and the random-force method in turbulence theory. Soviet Physics – JETP, 20(5), 1290–1294.
Zurück zum Zitat Pinto, D.J., & Ermentrout, G.B. (2001). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRef Pinto, D.J., & Ermentrout, G.B. (2001). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRef
Zurück zum Zitat Ploner, C.J., Gaymard, B., Rivaud, S., Agid, Y., Pierrot-Deseilligny, C. (1998). Temporal limits of spatial working memory in humans. European Journal of Neuroscience, 10(2), 794–797.CrossRefPubMed Ploner, C.J., Gaymard, B., Rivaud, S., Agid, Y., Pierrot-Deseilligny, C. (1998). Temporal limits of spatial working memory in humans. European Journal of Neuroscience, 10(2), 794–797.CrossRefPubMed
Zurück zum Zitat Rosenbaum, R., Smith, M.A., Kohn, A., Rubin, J.E., Doiron, B. (2017). The spatial structure of correlated neuronal variability. Nature Neuroscience, 20(1), 107.CrossRefPubMed Rosenbaum, R., Smith, M.A., Kohn, A., Rubin, J.E., Doiron, B. (2017). The spatial structure of correlated neuronal variability. Nature Neuroscience, 20(1), 107.CrossRefPubMed
Zurück zum Zitat Schneegans, S., & Bays, P.M. (2017). Neural architecture for feature binding in visual working memory. Journal of Neuroscience, 37(14), 3913–3925.CrossRefPubMedPubMedCentral Schneegans, S., & Bays, P.M. (2017). Neural architecture for feature binding in visual working memory. Journal of Neuroscience, 37(14), 3913–3925.CrossRefPubMedPubMedCentral
Zurück zum Zitat van den Berg, R., Shin, H., Chou, W.C., George, R., Ma, W.J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109 (22), 8780–8785.CrossRef van den Berg, R., Shin, H., Chou, W.C., George, R., Ma, W.J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109 (22), 8780–8785.CrossRef
Zurück zum Zitat Wei, Z., Wang, X.J., Wang, D.H. (2012). From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. Journal of Neuroscience, 32(33), 11,228–11,240.CrossRef Wei, Z., Wang, X.J., Wang, D.H. (2012). From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. Journal of Neuroscience, 32(33), 11,228–11,240.CrossRef
Zurück zum Zitat White, J.M., Sparks, D.L., Stanford, T.R. (1994). Saccades to remembered target locations: an analysis of systematic and variable errors. Vision Research, 34(1), 79–92.CrossRefPubMed White, J.M., Sparks, D.L., Stanford, T.R. (1994). Saccades to remembered target locations: an analysis of systematic and variable errors. Vision Research, 34(1), 79–92.CrossRefPubMed
Zurück zum Zitat Wilken, P., & Ma, W.J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11–11.CrossRef Wilken, P., & Ma, W.J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11–11.CrossRef
Zurück zum Zitat Wimmer, K., Nykamp, D.Q., Constantinidis, C., Compte, A. (2014). Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature Neuroscience, 17(3), 431–439.CrossRefPubMed Wimmer, K., Nykamp, D.Q., Constantinidis, C., Compte, A. (2014). Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature Neuroscience, 17(3), 431–439.CrossRefPubMed
Zurück zum Zitat Zylberberg, J., & Strowbridge, B.W. (2017). Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annual Review of Neuroscience, 40, 603–627.CrossRefPubMedPubMedCentral Zylberberg, J., & Strowbridge, B.W. (2017). Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annual Review of Neuroscience, 40, 603–627.CrossRefPubMedPubMedCentral
Metadaten
Titel
Synaptic efficacy shapes resource limitations in working memory
verfasst von
Nikhil Krishnan
Daniel B. Poll
Zachary P. Kilpatrick
Publikationsdatum
15.03.2018
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2018
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-018-0679-7

Weitere Artikel der Ausgabe 3/2018

Journal of Computational Neuroscience 3/2018 Zur Ausgabe