Skip to main content

2017 | OriginalPaper | Buchkapitel

Synaptic Plasticity with Memristive Nanodevices

verfasst von : Selina La Barbera, Fabien Alibart

Erschienen in: Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a comprehensive overview of current research on nanoscale memory devices suitable to implement some aspect of synaptic plasticity. Without being exhaustive on the different forms of plasticity that could be realized, we propose an overall classification and analysis of few of them, which can be the basis for going into the field of neuromorphic computing. More precisely, we present how nanoscale memory devices, implemented in a spike-based context, can be used for synaptic plasticity functions such as spike rate-dependent plasticity, spike timing-dependent plasticity, short-term plasticity, and long-term plasticity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbott, L., Varela, J., Sen, K., Nelson, S.: Synaptic depression and cortical gain control. Science 275(5297), 221–224 (1997)CrossRef Abbott, L., Varela, J., Sen, K., Nelson, S.: Synaptic depression and cortical gain control. Science 275(5297), 221–224 (1997)CrossRef
2.
Zurück zum Zitat Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000)CrossRef Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000)CrossRef
3.
Zurück zum Zitat Alibart, F., Pleutin, S., Guérin, D., Novembre, C., Lenfant, S., Lmimouni, K., Gamrat, C., Vuillaume, D.: An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20(2), 330–337 (2010)CrossRef Alibart, F., Pleutin, S., Guérin, D., Novembre, C., Lenfant, S., Lmimouni, K., Gamrat, C., Vuillaume, D.: An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20(2), 330–337 (2010)CrossRef
4.
Zurück zum Zitat Bi, G.-Q., Poo, M.-M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998) Bi, G.-Q., Poo, M.-M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)
5.
Zurück zum Zitat Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982) Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982)
6.
Zurück zum Zitat Bliss, T.V., Collingridge, G.L., et al.: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993)CrossRef Bliss, T.V., Collingridge, G.L., et al.: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993)CrossRef
7.
Zurück zum Zitat Boegerhausen, M., Suter, P., Liu, S.-C.: Modeling short-term synaptic depression in silicon. Neural Comput. 15(2), 331–348 (2003)CrossRefMATH Boegerhausen, M., Suter, P., Liu, S.-C.: Modeling short-term synaptic depression in silicon. Neural Comput. 15(2), 331–348 (2003)CrossRefMATH
8.
Zurück zum Zitat Boyden, E.S., Katoh, A., Raymond, J.L.: Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Neuroscience 27 (2004) Boyden, E.S., Katoh, A., Raymond, J.L.: Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Neuroscience 27 (2004)
9.
Zurück zum Zitat Buonomano, D.V., Karmarkar, U.R.: Book review: how do we tell time? Neurosc. 8(1), 42–51 (2002) Buonomano, D.V., Karmarkar, U.R.: Book review: how do we tell time? Neurosc. 8(1), 42–51 (2002)
10.
Zurück zum Zitat Buonomano, D.V., Maass, W.: State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10(2), 113–125 (2009)CrossRef Buonomano, D.V., Maass, W.: State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10(2), 113–125 (2009)CrossRef
11.
Zurück zum Zitat Cantley, K.D., Subramaniam, A., Stiegler, H.J., Chapman, R., Vogel, E.M., et al.: Hebbian learning in spiking neural networks with nanocrystalline silicon tfts and memristive synapses. IEEE Trans. Nanotechnol. 10(5), 1066–1073 (2011)CrossRef Cantley, K.D., Subramaniam, A., Stiegler, H.J., Chapman, R., Vogel, E.M., et al.: Hebbian learning in spiking neural networks with nanocrystalline silicon tfts and memristive synapses. IEEE Trans. Nanotechnol. 10(5), 1066–1073 (2011)CrossRef
12.
Zurück zum Zitat Chang, S.H., Lee, S.B., Jeon, D.Y., Park, S.J., Kim, G.T., Yang, S.M., Chae, S.C., Yoo, H.K., Kang, B.S., Lee, M.-J., et al.: Oxide double-layer nanocrossbar for ultrahigh-density bipolar resistive memory. Adv. Mater. 23(35), 4063–4067 (2011a)CrossRef Chang, S.H., Lee, S.B., Jeon, D.Y., Park, S.J., Kim, G.T., Yang, S.M., Chae, S.C., Yoo, H.K., Kang, B.S., Lee, M.-J., et al.: Oxide double-layer nanocrossbar for ultrahigh-density bipolar resistive memory. Adv. Mater. 23(35), 4063–4067 (2011a)CrossRef
13.
Zurück zum Zitat Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011b)CrossRef Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011b)CrossRef
14.
Zurück zum Zitat Clopath, C., Büsing, L., Vasilaki, E., Gerstner, W.: Connectivity reflects coding: a model of voltage-based stdp with homeostasis. Nat. Neurosci. 13(3), 344–352 (2010)CrossRef Clopath, C., Büsing, L., Vasilaki, E., Gerstner, W.: Connectivity reflects coding: a model of voltage-based stdp with homeostasis. Nat. Neurosci. 13(3), 344–352 (2010)CrossRef
15.
Zurück zum Zitat Deng, Y., Josberger, E., Jin, J., Rousdari, A.F., Helms, B.A., Zhong, C., Anantram, M., Rolandi, M.: H+-type and oh–type biological protonic semiconductors and complementary devices. Sci. Rep. 3 (2013) Deng, Y., Josberger, E., Jin, J., Rousdari, A.F., Helms, B.A., Zhong, C., Anantram, M., Rolandi, M.: H+-type and oh–type biological protonic semiconductors and complementary devices. Sci. Rep. 3 (2013)
16.
Zurück zum Zitat Desbief, S., Kyndiah, A., Guerin, D., Gentili, D., Murgia, M., Lenfant, S., Alibart, F., Cramer, T., Biscarini, F., Vuillaume, D.: Low voltage and time constant organic synapse-transistor. Org. Electron. 21, 47–53 (2015)CrossRef Desbief, S., Kyndiah, A., Guerin, D., Gentili, D., Murgia, M., Lenfant, S., Alibart, F., Cramer, T., Biscarini, F., Vuillaume, D.: Low voltage and time constant organic synapse-transistor. Org. Electron. 21, 47–53 (2015)CrossRef
17.
Zurück zum Zitat Du, C., Ma, W., Chang, T., Sheridan, P., Lu, W.D.: Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 25(27), 4290–4299 (2015)CrossRef Du, C., Ma, W., Chang, T., Sheridan, P., Lu, W.D.: Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 25(27), 4290–4299 (2015)CrossRef
18.
Zurück zum Zitat Gjorgjieva, J., Clopath, C., Audet, J., Pfister, J.-P.: A triplet spike-timing-dependent plasticity model generalizes the bienenstock-cooper-munro rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci. 108(48), 19383–19388 (2011)CrossRef Gjorgjieva, J., Clopath, C., Audet, J., Pfister, J.-P.: A triplet spike-timing-dependent plasticity model generalizes the bienenstock-cooper-munro rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci. 108(48), 19383–19388 (2011)CrossRef
19.
Zurück zum Zitat Hebb, D.O.: The first stage of perception: growth of the assembly. Org. Behav. 60–78 (1949) Hebb, D.O.: The first stage of perception: growth of the assembly. Org. Behav. 60–78 (1949)
20.
Zurück zum Zitat Izhikevich, E.M., et al.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRef Izhikevich, E.M., et al.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRef
21.
Zurück zum Zitat Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., Lu, W.D.: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203–2211 (2015)CrossRef Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., Lu, W.D.: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203–2211 (2015)CrossRef
22.
Zurück zum Zitat Kuzum, D., Jeyasingh, R.G., Lee, B., Wong, H.-S.P.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2011)CrossRef Kuzum, D., Jeyasingh, R.G., Lee, B., Wong, H.-S.P.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2011)CrossRef
23.
Zurück zum Zitat La Barbera, S., Vuillaume, D., Alibart, F.: Filamentary switching: synaptic plasticity through device volatility. ACS Nano 9(1), 941–949 (2015)CrossRef La Barbera, S., Vuillaume, D., Alibart, F.: Filamentary switching: synaptic plasticity through device volatility. ACS Nano 9(1), 941–949 (2015)CrossRef
24.
Zurück zum Zitat Lamprecht, R., LeDoux, J.: Structural plasticity and memory. Nat. Rev. Neurosci. 5(1), 45–54 (2004)CrossRef Lamprecht, R., LeDoux, J.: Structural plasticity and memory. Nat. Rev. Neurosci. 5(1), 45–54 (2004)CrossRef
25.
Zurück zum Zitat Lim, J., Ryu, S.Y., Kim, J., Jun, Y.: A study of tio2/carbon black composition as counter electrode materials for dye-sensitized solar cells. Nanoscale Res. Lett. 8(1), 1–5 (2013)CrossRef Lim, J., Ryu, S.Y., Kim, J., Jun, Y.: A study of tio2/carbon black composition as counter electrode materials for dye-sensitized solar cells. Nanoscale Res. Lett. 8(1), 1–5 (2013)CrossRef
26.
Zurück zum Zitat Maass, W., Natschläger, T.: Networks of spiking neurons can emulate arbitrary hopfield nets in temporal coding. Netw. Comput. Neural Syst. 8(4), 355–371 (1997)CrossRefMATH Maass, W., Natschläger, T.: Networks of spiking neurons can emulate arbitrary hopfield nets in temporal coding. Netw. Comput. Neural Syst. 8(4), 355–371 (1997)CrossRefMATH
27.
Zurück zum Zitat Malenka, R.C., Bear, M.F.: Ltp and ltd: an embarrassment of riches. Neuron 44(1), 5–21 (2004)CrossRef Malenka, R.C., Bear, M.F.: Ltp and ltd: an embarrassment of riches. Neuron 44(1), 5–21 (2004)CrossRef
28.
Zurück zum Zitat Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275(5297), 213–215 (1997)CrossRef Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275(5297), 213–215 (1997)CrossRef
29.
Zurück zum Zitat Markram, H., Pikus, D., Gupta, A., Tsodyks, M.: Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37(4), 489–500 (1998)CrossRef Markram, H., Pikus, D., Gupta, A., Tsodyks, M.: Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37(4), 489–500 (1998)CrossRef
30.
Zurück zum Zitat Mayr, C., Partzsch, J., Noack, M., Schüffny, R.: Live demonstration: multiple-timescale plasticity in a neuromorphic system. In: ISCAS, pp. 666–670 (2013) Mayr, C., Partzsch, J., Noack, M., Schüffny, R.: Live demonstration: multiple-timescale plasticity in a neuromorphic system. In: ISCAS, pp. 666–670 (2013)
31.
Zurück zum Zitat Mayr, C., Stärke, P., Partzsch, J., Cederstroem, L., Schüffny, R., Shuai, Y., Du, N., Schmidt, H.: Waveform driven plasticity in bifeo3 memristive devices: model and implementation. In: Advances in Neural Information Processing Systems, pp. 1700–1708 (2012) Mayr, C., Stärke, P., Partzsch, J., Cederstroem, L., Schüffny, R., Shuai, Y., Du, N., Schmidt, H.: Waveform driven plasticity in bifeo3 memristive devices: model and implementation. In: Advances in Neural Information Processing Systems, pp. 1700–1708 (2012)
32.
Zurück zum Zitat McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)MathSciNetCrossRefMATH McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011)CrossRef Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011)CrossRef
34.
Zurück zum Zitat Senn, W., Markram, H., Tsodyks, M.: An algorithm for modifying neurotransmitter release probability based on pre-and postsynaptic spike timing. Neural Comput. 13(1), 35–67 (2001)CrossRefMATH Senn, W., Markram, H., Tsodyks, M.: An algorithm for modifying neurotransmitter release probability based on pre-and postsynaptic spike timing. Neural Comput. 13(1), 35–67 (2001)CrossRefMATH
35.
Zurück zum Zitat Sjöström, P.J., Turrigiano, G.G., Nelson, S.B.: Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6), 1149–1164 (2001)CrossRef Sjöström, P.J., Turrigiano, G.G., Nelson, S.B.: Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6), 1149–1164 (2001)CrossRef
36.
Zurück zum Zitat Snider, G.S.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures, 2008. NANOARCH 2008, pp. 85–92. IEEE (2008) Snider, G.S.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures, 2008. NANOARCH 2008, pp. 85–92. IEEE (2008)
37.
Zurück zum Zitat Sourdet, V., Debanne, D.: The role of dendritic filtering in associative long-term synaptic plasticity. Learn. Mem. 6(5), 422–447 (1999)CrossRef Sourdet, V., Debanne, D.: The role of dendritic filtering in associative long-term synaptic plasticity. Learn. Mem. 6(5), 422–447 (1999)CrossRef
38.
Zurück zum Zitat Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRef Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRef
39.
Zurück zum Zitat Subramaniam, A., Cantley, K.D., Bersuker, G., Gilmer, D., Vogel, E.M.: Spike-timing-dependent plasticity using biologically realistic action potentials and low-temperature materials. IEEE Trans. Nanotechnol. 12(3), 450–459 (2013)CrossRef Subramaniam, A., Cantley, K.D., Bersuker, G., Gilmer, D., Vogel, E.M.: Spike-timing-dependent plasticity using biologically realistic action potentials and low-temperature materials. IEEE Trans. Nanotechnol. 12(3), 450–459 (2013)CrossRef
40.
Zurück zum Zitat Van Rossum, M.C., Bi, G.Q., Turrigiano, G.G.: Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20(23), 8812–8821 (2000) Van Rossum, M.C., Bi, G.Q., Turrigiano, G.G.: Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20(23), 8812–8821 (2000)
41.
Zurück zum Zitat Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L., Nelson, S.B.: A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J. Neurosci. 17(20), 7926–7940 (1997) Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L., Nelson, S.B.: A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J. Neurosci. 17(20), 7926–7940 (1997)
42.
Zurück zum Zitat Wang, Z.Q., Xu, H.Y., Li, X.H., Yu, H., Liu, Y.C., Zhu, X.J.: Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous ingazno memristor. Adv. Funct. Mater. 22(13), 2759–2765 (2012)CrossRef Wang, Z.Q., Xu, H.Y., Li, X.H., Yu, H., Liu, Y.C., Zhu, X.J.: Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous ingazno memristor. Adv. Funct. Mater. 22(13), 2759–2765 (2012)CrossRef
43.
Zurück zum Zitat Williamson, A., Schumann, L., Hiller, L., Klefenz, F., Hoerselmann, I., Husar, P., Schober, A.: Synaptic behavior and stdp of asymmetric nanoscale memristors in biohybrid systems. Nanoscale 5(16), 7297–7303 (2013)CrossRef Williamson, A., Schumann, L., Hiller, L., Klefenz, F., Hoerselmann, I., Husar, P., Schober, A.: Synaptic behavior and stdp of asymmetric nanoscale memristors in biohybrid systems. Nanoscale 5(16), 7297–7303 (2013)CrossRef
44.
Zurück zum Zitat Yang, Y., Choi, S., Lu, W.: Oxide heterostructure resistive memory. Nano Lett. 13(6), 2908–2915 (2013)CrossRef Yang, Y., Choi, S., Lu, W.: Oxide heterostructure resistive memory. Nano Lett. 13(6), 2908–2915 (2013)CrossRef
45.
Zurück zum Zitat Yuan, P., Leonetti, M.D., Pico, A.R., Hsiung, Y., MacKinnon, R.: Structure of the human bk channel ca2+-activation apparatus at 3.0 å resolution. Science 329(5988), 182–186 (2010)CrossRef Yuan, P., Leonetti, M.D., Pico, A.R., Hsiung, Y., MacKinnon, R.: Structure of the human bk channel ca2+-activation apparatus at 3.0 å resolution. Science 329(5988), 182–186 (2010)CrossRef
46.
Zurück zum Zitat Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6 (2015) Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6 (2015)
47.
Zurück zum Zitat Ziegler, L., Zenke, F., Kastner, D.B., Gerstner, W.: Synaptic consolidation: from synapses to behavioral modeling. J. Neurosci. 35(3), 1319–1334 (2015)CrossRef Ziegler, L., Zenke, F., Kastner, D.B., Gerstner, W.: Synaptic consolidation: from synapses to behavioral modeling. J. Neurosci. 35(3), 1319–1334 (2015)CrossRef
Metadaten
Titel
Synaptic Plasticity with Memristive Nanodevices
verfasst von
Selina La Barbera
Fabien Alibart
Copyright-Jahr
2017
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-3703-7_2

Neuer Inhalt