Skip to main content
Erschienen in: Applied Composite Materials 2/2019

12.05.2018

Synergistic Effects among the Structure, Martensite Transformation and Shear Band in a Shape Memory Alloy-Metallic Glass Composite

verfasst von: Xudong Zhang, Junqiang Ren, Xiangdong Ding

Erschienen in: Applied Composite Materials | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we use the finite element method to investigate the free volume evolution, as well as the martensite transformation effect and its connection with the pretreatment strain, in a shape memory alloy-metallic glass composite. Our simulation results show that the martensite phase transformation can enhance the blocking effect while relieving the free volume localization. The synergistic effect among the martensite transformation effect, blocking effect, and shear band interaction in the composite is responsible for the tensile plasticity and work-hardening capability. In addition, we design a Sierpinski carpet-like fractal microstructure so that the composite exhibits improved tensile performance as a result of the enhanced synergistic effect. However, the tensile performance of the composite deteriorates with increasing pretreatment strain since the martensite transformation effect is weakened.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pauly, S., Gorantla, S., Wang, G., Kühn, U., Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473–477 (2010)CrossRef Pauly, S., Gorantla, S., Wang, G., Kühn, U., Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473–477 (2010)CrossRef
2.
Zurück zum Zitat Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature. 451, 1085–1089 (2008)CrossRef Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature. 451, 1085–1089 (2008)CrossRef
3.
Zurück zum Zitat Qiao, J., Jia, H., Liaw, P.K.: Metallic glass matrix composites. Mater. Sci. Eng. R. Rep. 100, 1–69 (2016)CrossRef Qiao, J., Jia, H., Liaw, P.K.: Metallic glass matrix composites. Mater. Sci. Eng. R. Rep. 100, 1–69 (2016)CrossRef
4.
Zurück zum Zitat Sarac, B., Schroers, J.: Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013)CrossRef Sarac, B., Schroers, J.: Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013)CrossRef
5.
Zurück zum Zitat Şopu, D., Soyarslan, C., Sarac, B., Bargmann, S., Stoica, M., Eckert, J.: Structure-property relationships in nanoporous metallic glasses. Acta Mater. 106, 199–207 (2016)CrossRef Şopu, D., Soyarslan, C., Sarac, B., Bargmann, S., Stoica, M., Eckert, J.: Structure-property relationships in nanoporous metallic glasses. Acta Mater. 106, 199–207 (2016)CrossRef
6.
Zurück zum Zitat Wang, Y., Li, M., Xu, J.: Toughen and harden metallic glass through designing statistical heterogeneity. Scr. Mater. 113, 10–13 (2016)CrossRef Wang, Y., Li, M., Xu, J.: Toughen and harden metallic glass through designing statistical heterogeneity. Scr. Mater. 113, 10–13 (2016)CrossRef
7.
Zurück zum Zitat Wang, Y., Li, M., Xu, J.: Free volume gradient effect on mechanical properties of metallic glasses. Scr. Mater. 130, 12–16 (2017)CrossRef Wang, Y., Li, M., Xu, J.: Free volume gradient effect on mechanical properties of metallic glasses. Scr. Mater. 130, 12–16 (2017)CrossRef
8.
Zurück zum Zitat Wu, Y., Xiao, Y., Chen, G., Liu, C.T., Lu, Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770–2773 (2010)CrossRef Wu, Y., Xiao, Y., Chen, G., Liu, C.T., Lu, Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770–2773 (2010)CrossRef
9.
Zurück zum Zitat Wu, Y., Wang, H., Wu, H.H., Zhang, Z.Y., Hui, X.D., Chen, G.L., Ma, D., Wang, X.L., Lu, Z.P.: Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta Mater. 59, 2928–2936 (2011)CrossRef Wu, Y., Wang, H., Wu, H.H., Zhang, Z.Y., Hui, X.D., Chen, G.L., Ma, D., Wang, X.L., Lu, Z.P.: Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta Mater. 59, 2928–2936 (2011)CrossRef
10.
Zurück zum Zitat Hofmann, D.C.: Shape memory bulk metallic glass composites. Science. 329, 1294–1295 (2010)CrossRef Hofmann, D.C.: Shape memory bulk metallic glass composites. Science. 329, 1294–1295 (2010)CrossRef
11.
Zurück zum Zitat Sarac, B., Wilmers, J., Bargmann, S.: Property optimization of porous metallic glasses via structural design. Mater. Lett. 134, 306–310 (2014)CrossRef Sarac, B., Wilmers, J., Bargmann, S.: Property optimization of porous metallic glasses via structural design. Mater. Lett. 134, 306–310 (2014)CrossRef
12.
Zurück zum Zitat Jiang, Y., Sun, L., Wu, Q., Qiu, K.: Enhanced tensile ductility of metallic glass matrix composites with novel microstructure. J. Non-Cryst. Solids. 459, 26–31 (2017)CrossRef Jiang, Y., Sun, L., Wu, Q., Qiu, K.: Enhanced tensile ductility of metallic glass matrix composites with novel microstructure. J. Non-Cryst. Solids. 459, 26–31 (2017)CrossRef
13.
Zurück zum Zitat Jiang, Y., Wu, Q., Sun, L.: Macroscopic tensile plasticity of metallic glass matrix composites through gradient microstructures. J. Non-Cryst. Solids. 475, 96–100 (2017)CrossRef Jiang, Y., Wu, Q., Sun, L.: Macroscopic tensile plasticity of metallic glass matrix composites through gradient microstructures. J. Non-Cryst. Solids. 475, 96–100 (2017)CrossRef
14.
Zurück zum Zitat Jiang, Y., Shi, X., Qiu, K.: Numerical study of shear banding evolution in bulk metallic glass composites. Mater. Des. 77, 32–40 (2015)CrossRef Jiang, Y., Shi, X., Qiu, K.: Numerical study of shear banding evolution in bulk metallic glass composites. Mater. Des. 77, 32–40 (2015)CrossRef
15.
Zurück zum Zitat Wu, F.F., Chan, K.C., Jiang, S.S., Chen, S.H., Wang, G.: Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit. Sci. Rep. 4, 5302 (2014)CrossRef Wu, F.F., Chan, K.C., Jiang, S.S., Chen, S.H., Wang, G.: Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit. Sci. Rep. 4, 5302 (2014)CrossRef
16.
Zurück zum Zitat Wei, R., Chang, Y., Li, Y.F., Li, G., Yang, S., Zhang, C.J., He, L.: Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater. Sci. Eng. A. 587, 233–239 (2013)CrossRef Wei, R., Chang, Y., Li, Y.F., Li, G., Yang, S., Zhang, C.J., He, L.: Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater. Sci. Eng. A. 587, 233–239 (2013)CrossRef
17.
Zurück zum Zitat Hao, S., Cui, L., Jiang, D., Han, X., Ren, Y., Jiang, J., Liu, Y., Liu, Z., Mao, S., Wang, Y., Li, Y., Ren, X., Ding, X., Wang, S., Yu, C., Shi, X., Du, M., Yang, F., Zheng, Y., Zhang, Z., Li, X., Brown, D.E., Li, J.: A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science. 339, 1191–1194 (2013)CrossRef Hao, S., Cui, L., Jiang, D., Han, X., Ren, Y., Jiang, J., Liu, Y., Liu, Z., Mao, S., Wang, Y., Li, Y., Ren, X., Ding, X., Wang, S., Yu, C., Shi, X., Du, M., Yang, F., Zheng, Y., Zhang, Z., Li, X., Brown, D.E., Li, J.: A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science. 339, 1191–1194 (2013)CrossRef
18.
Zurück zum Zitat Zhang, X., Zong, H., Cui, L., Fan, X., Ding, X., Sun, J.: Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites. Sci. Rep. 7, 46360 (2017)CrossRef Zhang, X., Zong, H., Cui, L., Fan, X., Ding, X., Sun, J.: Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites. Sci. Rep. 7, 46360 (2017)CrossRef
19.
Zurück zum Zitat Liu, Z., Cui, L., Liu, Y., Jiang, D., Jiang, J., Shi, X., Shao, Y., Zheng, Y.: Influence of internal stress coupling on the deformation behavior of NiTi–Nb nanowire composites. Scr. Mater. 77, 75–78 (2014)CrossRef Liu, Z., Cui, L., Liu, Y., Jiang, D., Jiang, J., Shi, X., Shao, Y., Zheng, Y.: Influence of internal stress coupling on the deformation behavior of NiTi–Nb nanowire composites. Scr. Mater. 77, 75–78 (2014)CrossRef
20.
21.
Zurück zum Zitat Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)CrossRef Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)CrossRef
22.
Zurück zum Zitat Jiang, Y., Qiu, K.: Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Mater. Des. 65, 410–416 (2015)CrossRef Jiang, Y., Qiu, K.: Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Mater. Des. 65, 410–416 (2015)CrossRef
23.
Zurück zum Zitat Wang, Y., Li, M., Xu, J.: Mechanical properties of spinodal decomposed metallic glass composites. Scr. Mater. 135, 41–45 (2017)CrossRef Wang, Y., Li, M., Xu, J.: Mechanical properties of spinodal decomposed metallic glass composites. Scr. Mater. 135, 41–45 (2017)CrossRef
24.
Zurück zum Zitat Auricchio, F., Taylor, R.L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143, 175–194 (1997)CrossRef Auricchio, F., Taylor, R.L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143, 175–194 (1997)CrossRef
25.
Zurück zum Zitat Auricchio, F., Taylor, R.L., Lubliner, J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146, 281–312 (1997)CrossRef Auricchio, F., Taylor, R.L., Lubliner, J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146, 281–312 (1997)CrossRef
26.
Zurück zum Zitat Gao, Y.F.: An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Model. Simul. Mater. Sci. Eng. 14, 1329–1345 (2006)CrossRef Gao, Y.F.: An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Model. Simul. Mater. Sci. Eng. 14, 1329–1345 (2006)CrossRef
27.
Zurück zum Zitat Rebelo, N., Hsu, M., Foadian, H.: Simulation of superelastic alloys behavior with ABAQUS. In: SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, USA, pp. 457–469 (2001) Rebelo, N., Hsu, M., Foadian, H.: Simulation of superelastic alloys behavior with ABAQUS. In: SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, USA, pp. 457–469 (2001)
28.
Zurück zum Zitat Pauly, S., Liu, G., Wang, G., Das, J., Kim, K.B., Kühn, U., Kim, D.H., Eckert, J.: Modeling deformation behavior of Cu–Zr–Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009)CrossRef Pauly, S., Liu, G., Wang, G., Das, J., Kim, K.B., Kühn, U., Kim, D.H., Eckert, J.: Modeling deformation behavior of Cu–Zr–Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009)CrossRef
29.
Zurück zum Zitat Rao, W., Zhang, J., Kang, G., Liaw, P.K.: Numerical simulation on the deformation behaviors of bulk metallic glass composites under uniaxial tension and compression. Compos. Struct. 187, 411–428 (2018)CrossRef Rao, W., Zhang, J., Kang, G., Liaw, P.K.: Numerical simulation on the deformation behaviors of bulk metallic glass composites under uniaxial tension and compression. Compos. Struct. 187, 411–428 (2018)CrossRef
30.
Zurück zum Zitat Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A., Vaziri, A.: Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113, 104301 (2014)CrossRef Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A., Vaziri, A.: Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113, 104301 (2014)CrossRef
31.
Zurück zum Zitat Fan, J.A., Yeo, W.H., Su, Y., Hattori, Y., Lee, W., Jung, S.Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R.J., Huang, Y., Rogers, J.A.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)CrossRef Fan, J.A., Yeo, W.H., Su, Y., Hattori, Y., Lee, W., Jung, S.Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R.J., Huang, Y., Rogers, J.A.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)CrossRef
32.
Zurück zum Zitat Takeda, M.W., Kirihara, S., Miyamoto, Y., Sakoda, K., Honda, K.: Localization of electromagnetic waves in three-dimensional fractal cavities. Phys. Rev. Lett. 92, 093902 (2004)CrossRef Takeda, M.W., Kirihara, S., Miyamoto, Y., Sakoda, K., Honda, K.: Localization of electromagnetic waves in three-dimensional fractal cavities. Phys. Rev. Lett. 92, 093902 (2004)CrossRef
33.
Zurück zum Zitat Yang, F., Ni, D., Hao, S., Li, S., Ma, Z., Liu, Y., Feng, C., Cui, L.: Microstructure and phase stress partition of Mo fiber reinforced CuZnAl composite. Mater. Sci. Eng. A. 628, 419–422 (2015)CrossRef Yang, F., Ni, D., Hao, S., Li, S., Ma, Z., Liu, Y., Feng, C., Cui, L.: Microstructure and phase stress partition of Mo fiber reinforced CuZnAl composite. Mater. Sci. Eng. A. 628, 419–422 (2015)CrossRef
34.
Zurück zum Zitat Dong, Y.H., Cong, D.Y., Nie, Z.H., He, Z.B., Li, L.F., Wang, Z.L., Ren, Y., Wang, Y.D.: Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy. Appl. Phys. Lett. 107, 201901 (2015)CrossRef Dong, Y.H., Cong, D.Y., Nie, Z.H., He, Z.B., Li, L.F., Wang, Z.L., Ren, Y., Wang, Y.D.: Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy. Appl. Phys. Lett. 107, 201901 (2015)CrossRef
35.
Zurück zum Zitat Hao, S.J., Jiang, D.Q., Cui, L.S., Wang, Y.D., Shi, X.B., Nie, Z.H., Brown, D.E., Ren, Y.: Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl. Phys. Lett. 99, 084103 (2011)CrossRef Hao, S.J., Jiang, D.Q., Cui, L.S., Wang, Y.D., Shi, X.B., Nie, Z.H., Brown, D.E., Ren, Y.: Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl. Phys. Lett. 99, 084103 (2011)CrossRef
36.
Zurück zum Zitat Yu, C., Liu, Z., Liu, Y., Shao, Y., Ren, Y., Cui, L.: Load transfer in phase transforming matrix–nanowire composite revealing the significant load carrying capacity of the nanowires. Mater. Des. 89, 721–726 (2016)CrossRef Yu, C., Liu, Z., Liu, Y., Shao, Y., Ren, Y., Cui, L.: Load transfer in phase transforming matrix–nanowire composite revealing the significant load carrying capacity of the nanowires. Mater. Des. 89, 721–726 (2016)CrossRef
37.
Zurück zum Zitat Yu, H.B., Hu, J., Xia, X.X., Sun, B.A., Li, X.X., Wang, W.H., Bai, H.Y.: Stress-induced structural inhomogeneity and plasticity of bulk metallic glasses. Scr. Mater. 61, 640–643 (2009)CrossRef Yu, H.B., Hu, J., Xia, X.X., Sun, B.A., Li, X.X., Wang, W.H., Bai, H.Y.: Stress-induced structural inhomogeneity and plasticity of bulk metallic glasses. Scr. Mater. 61, 640–643 (2009)CrossRef
38.
Zurück zum Zitat Kumar, G., Rector, D., Conner, R.D., Schroers, J.: Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 57, 3572–3583 (2009)CrossRef Kumar, G., Rector, D., Conner, R.D., Schroers, J.: Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 57, 3572–3583 (2009)CrossRef
39.
Zurück zum Zitat Chen, L.Y., Fu, Z.D., Zhang, G.Q., Hao, X.P., Jiang, Q.K., Wang, X.D., Cao, Q.P., Franz, H., Liu, Y.G., Xie, H.S., Zhang, S.L., Wang, B.Y., Zeng, Y.W., Jiang, J.Z.: New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008)CrossRef Chen, L.Y., Fu, Z.D., Zhang, G.Q., Hao, X.P., Jiang, Q.K., Wang, X.D., Cao, Q.P., Franz, H., Liu, Y.G., Xie, H.S., Zhang, S.L., Wang, B.Y., Zeng, Y.W., Jiang, J.Z.: New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008)CrossRef
Metadaten
Titel
Synergistic Effects among the Structure, Martensite Transformation and Shear Band in a Shape Memory Alloy-Metallic Glass Composite
verfasst von
Xudong Zhang
Junqiang Ren
Xiangdong Ding
Publikationsdatum
12.05.2018
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 2/2019
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-018-9701-5

Weitere Artikel der Ausgabe 2/2019

Applied Composite Materials 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.