Skip to main content
Erschienen in: Polymer Bulletin 7/2017

16.12.2016 | Original Paper

Synthesis and characterization of agarose–bacterial cellulose biodegradable composites

verfasst von: Ankur Awadhiya, David Kumar, Kalpana Rathore, Bushara Fatma, Vivek Verma

Erschienen in: Polymer Bulletin | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Agarose is an abundant and biodegradable polymer with strength comparable or higher than other commonly used natural polymers. Agarose can be used for wound dressing and tissue engineering applications. Excessive water uptake and moderate strength limit its applicability for various applications. The objective of this study was to enhance its strength by reinforcing with bacterial cellulose. The addition of bacterial cellulose exhibited remarkable enhancement of 140% in the tensile strength of agarose bioplastic. The strength increased from 25.1 MPa for agarose bioplastic to a maximum of 60.2 MPa for 20% (w/w) of bacterial cellulose. There was a decrease in the amount of water absorption; at 37 °C, the composite films absorbed 450% of their own weight of water, as against 700% absorption by un-reinforced bioplastic films at the same temperature. Thermogravimetric analysis did not reveal any perceivable change in the thermal stability of the bioplastic. Biodegradability of composite films was also established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhang Y, Yuan X, Thompson MR, Liu Q (2012) Characterization of extruded film based on thermoplastic potato flour. J Appl Polym Sci 125:3250–3258CrossRef Zhang Y, Yuan X, Thompson MR, Liu Q (2012) Characterization of extruded film based on thermoplastic potato flour. J Appl Polym Sci 125:3250–3258CrossRef
2.
Zurück zum Zitat Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285CrossRef Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285CrossRef
3.
Zurück zum Zitat Gonzalez-Gutierrez J, Partal P, Garcia-Morales M, Gallegos C (2010) Development of highly-transparent protein/starch-based bioplastics. Bioresour Technol 101:2007–2013CrossRef Gonzalez-Gutierrez J, Partal P, Garcia-Morales M, Gallegos C (2010) Development of highly-transparent protein/starch-based bioplastics. Bioresour Technol 101:2007–2013CrossRef
4.
Zurück zum Zitat Vadori R, Mohanty AK, Misra M (2013) The effect of mold temperature on the performance of injection molded poly (lactic acid)-based bioplastic. Macromol Mater Eng 298:981–990CrossRef Vadori R, Mohanty AK, Misra M (2013) The effect of mold temperature on the performance of injection molded poly (lactic acid)-based bioplastic. Macromol Mater Eng 298:981–990CrossRef
5.
Zurück zum Zitat Kumaravel S, Hema R, Lakshmi R (2010) Production of polyhydroxybutyrate (bioplastic) and its biodegradation by Pseudomonas lemoignei and Aspergillus niger. J Chem 7:S536–S542 Kumaravel S, Hema R, Lakshmi R (2010) Production of polyhydroxybutyrate (bioplastic) and its biodegradation by Pseudomonas lemoignei and Aspergillus niger. J Chem 7:S536–S542
6.
Zurück zum Zitat Zarrinbakhsh N, Misra M, Mohanty AK (2011) Biodegradable green composites from distiller’s dried grains with solubles (DDGS) and a polyhydroxy (butyrate-co-valerate)(PHBV)-based bioplastic. Macromol Mater Eng 296:1035–1045CrossRef Zarrinbakhsh N, Misra M, Mohanty AK (2011) Biodegradable green composites from distiller’s dried grains with solubles (DDGS) and a polyhydroxy (butyrate-co-valerate)(PHBV)-based bioplastic. Macromol Mater Eng 296:1035–1045CrossRef
7.
Zurück zum Zitat Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763CrossRef Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763CrossRef
8.
Zurück zum Zitat Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711CrossRef Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711CrossRef
9.
Zurück zum Zitat Hutmacher D, Goh J, Teoh S (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap 30:183–191 Hutmacher D, Goh J, Teoh S (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap 30:183–191
10.
Zurück zum Zitat Şentürk SB, Kahraman D, Alkan C, Gökçe İ (2011) Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr Polym 84:141–144CrossRef Şentürk SB, Kahraman D, Alkan C, Gökçe İ (2011) Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr Polym 84:141–144CrossRef
11.
Zurück zum Zitat Tabata M, Shimoda T, Sugihara K, Ogomi D, Serizawa T, Akashi M (2003) Osteoconductive and hemostatic properties of apatite formed on/in agarose gel as a bone-grafting material. J Biomed Mater Res B Appl Biomater 67:680–688CrossRef Tabata M, Shimoda T, Sugihara K, Ogomi D, Serizawa T, Akashi M (2003) Osteoconductive and hemostatic properties of apatite formed on/in agarose gel as a bone-grafting material. J Biomed Mater Res B Appl Biomater 67:680–688CrossRef
12.
Zurück zum Zitat Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219CrossRef Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219CrossRef
13.
Zurück zum Zitat Funke U, Bergthaller W, Lindhauer MG (1998) Processing and characterization of biodegradable products based on starch. Polym Degrad Stab 59:293–296CrossRef Funke U, Bergthaller W, Lindhauer MG (1998) Processing and characterization of biodegradable products based on starch. Polym Degrad Stab 59:293–296CrossRef
14.
Zurück zum Zitat Bao X, Hayashi K, Li Y, Teramoto A, Abe K (2010) Novel agarose and agar fibers: fabrication and characterization. Mater Lett 64:2435–2437CrossRef Bao X, Hayashi K, Li Y, Teramoto A, Abe K (2010) Novel agarose and agar fibers: fabrication and characterization. Mater Lett 64:2435–2437CrossRef
15.
Zurück zum Zitat Sánchez-Salcedo S, Nieto A, Vallet-Regí M (2008) Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J 137:62–71CrossRef Sánchez-Salcedo S, Nieto A, Vallet-Regí M (2008) Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J 137:62–71CrossRef
16.
Zurück zum Zitat Lewitus DY, Smith KL, Landers J, Neimark AV, Kohn J (2014) Bioactive agarose carbon-nanotube composites are capable of manipulating brain–implant interface. J Appl Polym Sci 131:40297–40304CrossRef Lewitus DY, Smith KL, Landers J, Neimark AV, Kohn J (2014) Bioactive agarose carbon-nanotube composites are capable of manipulating brain–implant interface. J Appl Polym Sci 131:40297–40304CrossRef
17.
Zurück zum Zitat Li X, Gao H, Scrivens WA, Fei D, Thakur V, Sutton MA, Reynolds AP, Myrick ML (2005) Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology 16:2020CrossRef Li X, Gao H, Scrivens WA, Fei D, Thakur V, Sutton MA, Reynolds AP, Myrick ML (2005) Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology 16:2020CrossRef
18.
Zurück zum Zitat Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123CrossRef Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123CrossRef
19.
Zurück zum Zitat Awadhiya A, Kumar D, Verma V (2016) Crosslinking of agarose bioplastic using citric acid. Carbohydr Polym 151:60–67CrossRef Awadhiya A, Kumar D, Verma V (2016) Crosslinking of agarose bioplastic using citric acid. Carbohydr Polym 151:60–67CrossRef
20.
Zurück zum Zitat Yang CX, Gao C, Wan YZ, Tang TT, Zhang SH, Dai KR (2011) Preparation and characterization of three-dimensional nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. J Porous Mater 18:545–552CrossRef Yang CX, Gao C, Wan YZ, Tang TT, Zhang SH, Dai KR (2011) Preparation and characterization of three-dimensional nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. J Porous Mater 18:545–552CrossRef
21.
Zurück zum Zitat Fernandez-Cossio S, Leon-Mateos A, Sampedro FG, Oreja MT (2007) Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg 120:1161–1169CrossRef Fernandez-Cossio S, Leon-Mateos A, Sampedro FG, Oreja MT (2007) Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg 120:1161–1169CrossRef
22.
Zurück zum Zitat Kao JM, Rose R, Yousef M, Hunter SK, Rodgers VG (1999) In vivo biocompatibility evaluation of Cibacron blue-agarose. J Biomed Mater Res 47:537–542CrossRef Kao JM, Rose R, Yousef M, Hunter SK, Rodgers VG (1999) In vivo biocompatibility evaluation of Cibacron blue-agarose. J Biomed Mater Res 47:537–542CrossRef
23.
Zurück zum Zitat Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRef Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRef
24.
Zurück zum Zitat Rhim J-W, Reddy JP, Luo X (2015) Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22:407–420CrossRef Rhim J-W, Reddy JP, Luo X (2015) Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22:407–420CrossRef
25.
Zurück zum Zitat Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425CrossRef Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425CrossRef
26.
Zurück zum Zitat Oishi Y, Nakaya M, Matsui E, Hotta A (2015) Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly (vinyl alcohol). Compos A Appl Sci Manuf 73:72–79CrossRef Oishi Y, Nakaya M, Matsui E, Hotta A (2015) Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly (vinyl alcohol). Compos A Appl Sci Manuf 73:72–79CrossRef
27.
Zurück zum Zitat Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci Part A Polym Chem 54:2515–2525CrossRef Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci Part A Polym Chem 54:2515–2525CrossRef
28.
Zurück zum Zitat Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef
29.
Zurück zum Zitat Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) A study on mechanical properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with liquid rubber. Compos A Appl Sci Manuf 41:1263–1271CrossRef Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) A study on mechanical properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with liquid rubber. Compos A Appl Sci Manuf 41:1263–1271CrossRef
30.
Zurück zum Zitat Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832CrossRef Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832CrossRef
31.
Zurück zum Zitat Deng F, Ge X, Zhang Y, Li MC, Cho UR (2015) Synthesis and characterization of microcrystalline cellulose-graft-poly (methyl methacrylate) copolymers and their application as rubber reinforcements. J Appl Polym Sci 132:42666–42675 Deng F, Ge X, Zhang Y, Li MC, Cho UR (2015) Synthesis and characterization of microcrystalline cellulose-graft-poly (methyl methacrylate) copolymers and their application as rubber reinforcements. J Appl Polym Sci 132:42666–42675
32.
Zurück zum Zitat Favi PM, Ospina SP, Kachole M, Gao M, Atehortua L, Webster TJ (2016) Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose 23:1263–1282CrossRef Favi PM, Ospina SP, Kachole M, Gao M, Atehortua L, Webster TJ (2016) Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose 23:1263–1282CrossRef
33.
Zurück zum Zitat Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155CrossRef Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155CrossRef
34.
Zurück zum Zitat Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocolloids 53:75–83CrossRef Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocolloids 53:75–83CrossRef
35.
Zurück zum Zitat Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138CrossRef Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138CrossRef
36.
Zurück zum Zitat El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3:1196–1217 El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3:1196–1217
37.
Zurück zum Zitat Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345CrossRef
38.
Zurück zum Zitat Ohad I, Danon D, Hestrin S (1962) Synthesis of cellulose by Acetobacter xylinum V. Ultrastructure of polymer. J Cell Biol 12:31–46CrossRef Ohad I, Danon D, Hestrin S (1962) Synthesis of cellulose by Acetobacter xylinum V. Ultrastructure of polymer. J Cell Biol 12:31–46CrossRef
39.
Zurück zum Zitat Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569CrossRef Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569CrossRef
40.
Zurück zum Zitat Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRef Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRef
41.
Zurück zum Zitat Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832CrossRef Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832CrossRef
42.
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
43.
Zurück zum Zitat Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef
44.
Zurück zum Zitat Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRef Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRef
45.
Zurück zum Zitat Awadhiya A, Tyeb S, Rathore K, Verma V (2016) Agarose bioplastic based drug delivery system for surgical and wound dressings. Eng Life Sci. doi:10.1002/elsc.201500116 Awadhiya A, Tyeb S, Rathore K, Verma V (2016) Agarose bioplastic based drug delivery system for surgical and wound dressings. Eng Life Sci. doi:10.​1002/​elsc.​201500116
46.
Zurück zum Zitat Srithongkham S, Vivitchanont L, Krongtaew C (2012) Starch/cellulose biocomposites prepared by high-shear homogenization/compression molding. J Mater Sci Eng B 2:213–222 Srithongkham S, Vivitchanont L, Krongtaew C (2012) Starch/cellulose biocomposites prepared by high-shear homogenization/compression molding. J Mater Sci Eng B 2:213–222
47.
Zurück zum Zitat Lee S-Y, Mohan D, Kang I-A, Doh G-H, Lee S, Han S (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82CrossRef Lee S-Y, Mohan D, Kang I-A, Doh G-H, Lee S, Han S (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82CrossRef
48.
Zurück zum Zitat Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498CrossRef Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498CrossRef
49.
Zurück zum Zitat Phua SL, Yang L, Toh CL, Huang S, Tsakadze Z, Lau SK, Mai Y-W, Lu X (2012) Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. ACS Appl Mater Interfaces 4:4571–4578CrossRef Phua SL, Yang L, Toh CL, Huang S, Tsakadze Z, Lau SK, Mai Y-W, Lu X (2012) Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. ACS Appl Mater Interfaces 4:4571–4578CrossRef
50.
Zurück zum Zitat Zhang W, Dehghani-Sanij AA, Blackburn RS (2008) IR study on hydrogen bonding in epoxy resin–silica nanocomposites. Prog Nat Sci 18:801–805CrossRef Zhang W, Dehghani-Sanij AA, Blackburn RS (2008) IR study on hydrogen bonding in epoxy resin–silica nanocomposites. Prog Nat Sci 18:801–805CrossRef
51.
Zurück zum Zitat Aztatzi-Pluma D, Castrejón-González EO, Almendarez-Camarillo A, Alvarado JF, Duran-Morales Y (2016) Study of the molecular interactions between functionalized carbon nanotubes and chitosan. J Phys Chem C 120:2371–2378CrossRef Aztatzi-Pluma D, Castrejón-González EO, Almendarez-Camarillo A, Alvarado JF, Duran-Morales Y (2016) Study of the molecular interactions between functionalized carbon nanotubes and chitosan. J Phys Chem C 120:2371–2378CrossRef
Metadaten
Titel
Synthesis and characterization of agarose–bacterial cellulose biodegradable composites
verfasst von
Ankur Awadhiya
David Kumar
Kalpana Rathore
Bushara Fatma
Vivek Verma
Publikationsdatum
16.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 7/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1872-3

Weitere Artikel der Ausgabe 7/2017

Polymer Bulletin 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.