Skip to main content
Erschienen in: Cellulose 1/2013

01.02.2013 | Original Paper

Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels

verfasst von: Jun Yang, Chun-Rui Han, Jiu-Fang Duan, Ming-Guo Ma, Xue-Ming Zhang, Feng Xu, Run-Cang Sun

Erschienen in: Cellulose | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The unique combinations of hard and soft components with core/shell structures were proposed to synthesize high strength nanocomposite hydrogels. The elastomeric hydrogels containing rod-like cellulose nanocrystals (CNCs) core and polyacrylamide shell were made from aqueous solutions via free radical polymerization in the absence of chemical cross-links. The obtained hydrogels possessed greater tensile strength and elongation ratio when compared with chemically cross-linked counterparts. Oscillatory shear experiments indicated that CNCs interacted with polymer matrix via both chemical and physical interactions and contributed to the rubbery elasticity of the hydrogels. The nanocomposite hydrogels were more viscous than the chemical hydrogels, suggesting the addition of CNC led to the increase of energy dissipating and viscoelastic properties. The network structure model was proposed and it suggested that the high extensibilities and fracture stresses were related to the well-defined network structures with low cross-linking density and lack of noncovalent interactions among polymer chains, which may promote the rearrangements of network structure at high deformations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791CrossRef Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791CrossRef
Zurück zum Zitat Abdelmouleh M, Boufi S, Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208CrossRef Abdelmouleh M, Boufi S, Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208CrossRef
Zurück zum Zitat Akagi Y, Katashima T, Katsumoto Y, Fujii K, Matsunaga T, Chung UI, Shibayama M, Sakai T (2011) Examination of the theories of rubber elasticity using an ideal polymer network. Macromolecules 44:5817–5821CrossRef Akagi Y, Katashima T, Katsumoto Y, Fujii K, Matsunaga T, Chung UI, Shibayama M, Sakai T (2011) Examination of the theories of rubber elasticity using an ideal polymer network. Macromolecules 44:5817–5821CrossRef
Zurück zum Zitat Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6:3619–3631CrossRef Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6:3619–3631CrossRef
Zurück zum Zitat Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588CrossRef Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588CrossRef
Zurück zum Zitat Das D, Kar T, Das PK (2012) Gel-nanocomposites: materials with promising applications. Soft Matter 8:2348–2365CrossRef Das D, Kar T, Das PK (2012) Gel-nanocomposites: materials with promising applications. Soft Matter 8:2348–2365CrossRef
Zurück zum Zitat Fajardo AR, Radovanovic E, Rubira AF, Muniz EC, Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463CrossRef Fajardo AR, Radovanovic E, Rubira AF, Muniz EC, Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463CrossRef
Zurück zum Zitat Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRef Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRef
Zurück zum Zitat Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Hao JK, Weiss RA (2011) Viscoelastic and mechanical behavior of hydrophobically modified hydrogels. Macromolecules 44:9390–9398CrossRef Hao JK, Weiss RA (2011) Viscoelastic and mechanical behavior of hydrophobically modified hydrogels. Macromolecules 44:9390–9398CrossRef
Zurück zum Zitat Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRef Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRef
Zurück zum Zitat Hu J, Chen M, Wu LM (2010) Organic-inorganic nanocomposites synthesized via miniemulsion polymerization. Polym Chem 2:760–772CrossRef Hu J, Chen M, Wu LM (2010) Organic-inorganic nanocomposites synthesized via miniemulsion polymerization. Polym Chem 2:760–772CrossRef
Zurück zum Zitat Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626CrossRef Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626CrossRef
Zurück zum Zitat Isobe N, Sekine M, Kimura S, Wada M, Kuga S (2011) Anomalous reinforcing effects in cellulose gel-based polymeric nanocomposites. Cellulose 18:327–333CrossRef Isobe N, Sekine M, Kimura S, Wada M, Kuga S (2011) Anomalous reinforcing effects in cellulose gel-based polymeric nanocomposites. Cellulose 18:327–333CrossRef
Zurück zum Zitat Joly S, Garnaud G, Ollitrault R, Bokobza L (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14:4202–4208CrossRef Joly S, Garnaud G, Ollitrault R, Bokobza L (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14:4202–4208CrossRef
Zurück zum Zitat Li H, Lai FK, Luo RM (2009) Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model. Langmuir 25:13142–13150CrossRef Li H, Lai FK, Luo RM (2009) Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model. Langmuir 25:13142–13150CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Adv Polym Sci 205:97–151CrossRef Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Adv Polym Sci 205:97–151CrossRef
Zurück zum Zitat Nykänen VPS, Nykänen A, Puska MA, Silva GG, Ruokolainen J (2011) Dual-responsive and super absorbing thermally cross-linked hydrogel based on methacrylate substituted polyphosphazene. Soft Matter 7:4414–4424CrossRef Nykänen VPS, Nykänen A, Puska MA, Silva GG, Ruokolainen J (2011) Dual-responsive and super absorbing thermally cross-linked hydrogel based on methacrylate substituted polyphosphazene. Soft Matter 7:4414–4424CrossRef
Zurück zum Zitat Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRef Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRef
Zurück zum Zitat Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interface 168:247–262CrossRef Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interface 168:247–262CrossRef
Zurück zum Zitat Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371CrossRef Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371CrossRef
Zurück zum Zitat Simhadri JJ, Stretz HA, Oyanader M, Arce PE (2010) Role of nanocomposite hydrogel morphology in the electrophoretic separation of biomolecules: a review. Ind Eng Chem Res 49:11866–11877CrossRef Simhadri JJ, Stretz HA, Oyanader M, Arce PE (2010) Role of nanocomposite hydrogel morphology in the electrophoretic separation of biomolecules: a review. Ind Eng Chem Res 49:11866–11877CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237CrossRef Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237CrossRef
Zurück zum Zitat Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRef Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRef
Zurück zum Zitat Wang T, Liu D, Lian CX, Zheng SD, Liu XX, Tong Z (2012) Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–laponite nanocomposite hydrogels. Soft Matter 8:774–783CrossRef Wang T, Liu D, Lian CX, Zheng SD, Liu XX, Tong Z (2012) Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–laponite nanocomposite hydrogels. Soft Matter 8:774–783CrossRef
Zurück zum Zitat Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927CrossRef Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927CrossRef
Zurück zum Zitat Wu CL, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough iuronic F127/laponite nanocomposite hydrogels from covalently and physically cross-Linked networks. Macromolecules 44:8215–8224CrossRef Wu CL, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough iuronic F127/laponite nanocomposite hydrogels from covalently and physically cross-Linked networks. Macromolecules 44:8215–8224CrossRef
Zurück zum Zitat Wu JJ, Zhao N, Zhang XL (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19:1239–1249CrossRef Wu JJ, Zhao N, Zhang XL (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19:1239–1249CrossRef
Zurück zum Zitat Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012a) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480CrossRef Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012a) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480CrossRef
Zurück zum Zitat Yang J, Gong C, Shi FK, Xie XM (2012b) High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties. J Phys Chem B 116:12038–12047CrossRef Yang J, Gong C, Shi FK, Xie XM (2012b) High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties. J Phys Chem B 116:12038–12047CrossRef
Zurück zum Zitat Yoon J, Lee KJ, Lahann J (2011) Multifunctional polymer particles with distinct compartments. J Mater Chem 21:8502–8510CrossRef Yoon J, Lee KJ, Lahann J (2011) Multifunctional polymer particles with distinct compartments. J Mater Chem 21:8502–8510CrossRef
Zurück zum Zitat Zhou CJ, Wu QL, Yue YY, Zhang QG (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Colloid Interface Sci 353:116–123CrossRef Zhou CJ, Wu QL, Yue YY, Zhang QG (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Colloid Interface Sci 353:116–123CrossRef
Metadaten
Titel
Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels
verfasst von
Jun Yang
Chun-Rui Han
Jiu-Fang Duan
Ming-Guo Ma
Xue-Ming Zhang
Feng Xu
Run-Cang Sun
Publikationsdatum
01.02.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9841-y

Weitere Artikel der Ausgabe 1/2013

Cellulose 1/2013 Zur Ausgabe

Editorial

Transition