Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 17/2020

27.07.2020

Synthesis and characterization of rGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material

verfasst von: Zeinab Abasali karaj abad, Ali Nemati, Adrine Malek Khachatourian, Mohammad Golmohammad

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The reduced graphene oxide-Fe2O3 (rGO-Fe2O3) nanocomposites were synthesized by a facile and low-cost hydrothermal method employing rGO and Iron (III) nitrate precursors. The synthesis parameters including the reduction time and presence of reduction aid are studied. The structural and morphological studies of the nanocomposites were investigated by using Raman spectra, Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. The results indicate that Fe2O3 nanoparticles with average particle size of 25 nm are well anchored on graphene sheets and the weight percent of the nanoparticles in the nanocomposites was influenced by the reduction time. The as-synthesized nanocomposites were characterized by a three-electrode system using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge in 1 M KOH aqueous solution. The electrodes made of rGO-Fe2O3 nanocomposite synthesized by urea as reduction aid showed a high specific capacitance of 291 F g−1 at 1 A g−1 in the potential range of − 1 to 0 V. The best electrochemical performance of urea reducted rGO-Fe2O3 nanocomposites is basically attributed to the effect of Fe2O3 nanoparticles in preventing the restacking of rGO sheets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Sabihuddin, A.E. Kiprakis, M. Mueller, A numerical and graphical review of energy storage technologies. Energies 8(1), 172–216 (2015) S. Sabihuddin, A.E. Kiprakis, M. Mueller, A numerical and graphical review of energy storage technologies. Energies 8(1), 172–216 (2015)
2.
Zurück zum Zitat D. Zhang, J. Li, Z. Su, S. Hu, H. Li, Y. Yan, Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J. Adv. Ceram. 7, 246–255 (2018) D. Zhang, J. Li, Z. Su, S. Hu, H. Li, Y. Yan, Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J. Adv. Ceram. 7, 246–255 (2018)
3.
Zurück zum Zitat H. Yang, X. Sun, H. Zhu, Y. Yu, Q. Zhu, Z. Fu, Sh Ta, L. Wang, H. Zhu, Q. Zhang, Nano-porous carbon materials derived from different biomasses for high performance supercapacitors. Ceram. Int. 46(5), 5811–5820 (2020) H. Yang, X. Sun, H. Zhu, Y. Yu, Q. Zhu, Z. Fu, Sh Ta, L. Wang, H. Zhu, Q. Zhang, Nano-porous carbon materials derived from different biomasses for high performance supercapacitors. Ceram. Int. 46(5), 5811–5820 (2020)
4.
Zurück zum Zitat G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012) G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)
5.
Zurück zum Zitat C.S. Zaharaddeen, S. Iro, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci 11, 10628–10643 (2016) C.S. Zaharaddeen, S. Iro, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci 11, 10628–10643 (2016)
6.
Zurück zum Zitat Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2(7), 588–600 (2016) Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2(7), 588–600 (2016)
7.
Zurück zum Zitat G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011) G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011)
8.
Zurück zum Zitat L.F. Aval, M. Ghoranneviss, G.B. Pour, High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 4, e00862 (2018) L.F. Aval, M. Ghoranneviss, G.B. Pour, High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 4, e00862 (2018)
9.
Zurück zum Zitat Sh Ren, P. Rong, Q. Yu, Preparations, properties and applications of graphene in functional devices: a concise review. Ceram. Int. 44(11), 11940–11955 (2018) Sh Ren, P. Rong, Q. Yu, Preparations, properties and applications of graphene in functional devices: a concise review. Ceram. Int. 44(11), 11940–11955 (2018)
10.
Zurück zum Zitat K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok, K.P. Loh, W.S. Chin, C.H. Sow, α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9), 2958–2961 (2012) K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok, K.P. Loh, W.S. Chin, C.H. Sow, α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9), 2958–2961 (2012)
11.
Zurück zum Zitat D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017) D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017)
12.
Zurück zum Zitat Z. Song, W. Liu, P. Xiao, Z. Zhao, G. Liu, J. Qiu, Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window. Mater. Lett. 145, 44–47 (2015) Z. Song, W. Liu, P. Xiao, Z. Zhao, G. Liu, J. Qiu, Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window. Mater. Lett. 145, 44–47 (2015)
13.
Zurück zum Zitat P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, Z. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloys Compd. 604, 87–93 (2014) P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, Z. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloys Compd. 604, 87–93 (2014)
14.
Zurück zum Zitat S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7), 3845–3852 (2010) S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7), 3845–3852 (2010)
15.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010) D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)
16.
Zurück zum Zitat S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006) S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)
17.
Zurück zum Zitat Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6(24), 1–17 (2016) Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6(24), 1–17 (2016)
18.
Zurück zum Zitat J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64(1), 225–229 (2013) J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64(1), 225–229 (2013)
19.
Zurück zum Zitat P.S. Joshi, D.S. Sutrave, A brief study of cyclic voltammetry and electrochemical analysis. Int. J. ChemTech Res. 11(9), 77–88 (2018) P.S. Joshi, D.S. Sutrave, A brief study of cyclic voltammetry and electrochemical analysis. Int. J. ChemTech Res. 11(9), 77–88 (2018)
20.
Zurück zum Zitat R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N. Dollah, Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8(1), 257–273 (2013) R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N. Dollah, Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8(1), 257–273 (2013)
21.
Zurück zum Zitat S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoffa, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007) S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoffa, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)
22.
Zurück zum Zitat W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010) W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010)
24.
Zurück zum Zitat A. Liu, W. Zhou, K. Shen, J. Liu, X. Zhang, One-pot hydrothermal synthesis of hematite-reduced graphene oxide composites for efficient removal of malachite green from aqueous solution. RSC Adv. 5(22), 17336–17342 (2015) A. Liu, W. Zhou, K. Shen, J. Liu, X. Zhang, One-pot hydrothermal synthesis of hematite-reduced graphene oxide composites for efficient removal of malachite green from aqueous solution. RSC Adv. 5(22), 17336–17342 (2015)
25.
Zurück zum Zitat M. Jahanshahi, A. Morad Rashidi, A. Asghar Ghoreyshi, Synthesis and characterization of thermally-reduced graphene. Iran. J. Energy Environ. 4(1), 53–59 (2013) M. Jahanshahi, A. Morad Rashidi, A. Asghar Ghoreyshi, Synthesis and characterization of thermally-reduced graphene. Iran. J. Energy Environ. 4(1), 53–59 (2013)
26.
Zurück zum Zitat K. Satheesh, R. Jayavel, Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013) K. Satheesh, R. Jayavel, Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013)
27.
Zurück zum Zitat S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011) S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011)
28.
Zurück zum Zitat J.S. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Anchored Fe3O4 nanoparticles on rGO nanosheets as high-power negative electrodes for aqueous batteries. ChemElectroChem 4(6), 1295–1305 (2017) J.S. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Anchored Fe3O4 nanoparticles on rGO nanosheets as high-power negative electrodes for aqueous batteries. ChemElectroChem 4(6), 1295–1305 (2017)
29.
Zurück zum Zitat P.S. Teo, H.N. Lim, N.M. Huang, C.H. Chia, I. Harrison, Room temperature in situ chemical synthesis of Fe3O4/graphene. Ceram. Int. 38(8), 6411–6416 (2012) P.S. Teo, H.N. Lim, N.M. Huang, C.H. Chia, I. Harrison, Room temperature in situ chemical synthesis of Fe3O4/graphene. Ceram. Int. 38(8), 6411–6416 (2012)
30.
Zurück zum Zitat H. Karami, F. Goli, J. Ordoukhanian, Synthesis of magnetite/hematite/iron nanocomposites by the low voltage arc discharge in water in the presence of external magnetic field. Int. J. Electrochem. Sci. 11(4), 3074–3085 (2016) H. Karami, F. Goli, J. Ordoukhanian, Synthesis of magnetite/hematite/iron nanocomposites by the low voltage arc discharge in water in the presence of external magnetic field. Int. J. Electrochem. Sci. 11(4), 3074–3085 (2016)
31.
Zurück zum Zitat A. Oz, S. Hershkovitz, Y. Tsur, Electrochemical impedance spectroscopy of supercapacitors: a novel analysis approach using evolutionary programming. AIP Conf. Proc. 1627, 76–80 (2014) A. Oz, S. Hershkovitz, Y. Tsur, Electrochemical impedance spectroscopy of supercapacitors: a novel analysis approach using evolutionary programming. AIP Conf. Proc. 1627, 76–80 (2014)
32.
Zurück zum Zitat M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J. Mater. Sci. Mater. Electron. 28(18), 13532–13539 (2017) M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J. Mater. Sci. Mater. Electron. 28(18), 13532–13539 (2017)
Metadaten
Titel
Synthesis and characterization of rGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material
verfasst von
Zeinab Abasali karaj abad
Ali Nemati
Adrine Malek Khachatourian
Mohammad Golmohammad
Publikationsdatum
27.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 17/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04062-7

Weitere Artikel der Ausgabe 17/2020

Journal of Materials Science: Materials in Electronics 17/2020 Zur Ausgabe

Neuer Inhalt