Skip to main content
Erschienen in: Journal of Materials Science 15/2017

22.02.2017 | In Honor of Larry Hench

Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses

verfasst von: Anthony L. B. Maçon, Sungho Lee, Gowsihan Poologasundarampillai, Toshihiro Kasuga, Julian R. Jones

Erschienen in: Journal of Materials Science | Ausgabe 15/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the substitution of strontium for calcium in the tertiary the SiO2–CaO–P2O5 sol–gel bioactive glass 58S (60SiO2·36CaO·4P2O5, mol%) on its structure and its chemical durability on soaking in simulated body fluids was investigated. 58S was selected as a starting composition, and substitution for calcium was carried out from 0 to 100% with an increment of 25%. A novel phosphate source of diethylphosphatoethyltriethoxysilane, which consists of Si and P connected with ethylene group, was used in this work. XRD and FTIR showed that the gels obtained following drying at 130 °C had a typical sol–gel structure, where a continuous amorphous silica gel network and surface bound mineral salts of Ca(NO3)2 and Sr(NO3)2. Once the gels were heat stabilised to decompose nitrates and incorporate the cations into the network, samples containing Sr formed a strontium silicate crystalline phase. With increasing levels of Sr in the composition, the overall crystallinity of the glass–ceramic increased, while, at the maximum substitution of 100% SrO, macroscopic phase separation was observed, characterised by needle-like crystals of strontium apatite (Sr5(PO4)3OH) and strontium silicate (Sr2SiO4) phases in addition to amorphous regions. Dissolution experiments in Tris-buffered solution showed Sr successfully released into the media even though it existed as a crystalline phase in the glass–ceramic. Further, the glass–ceramics induced nucleation and growth of carbonated hydroxyapatite (HA) on their surface suggesting potential bioactivity of the materials. At higher substitutions (75 and 100% SrO for CaO), HA nucleation was not found to occur this may have been due to low amount of phosphate released from the original glass–ceramic as a result of it being locked up in the strontium apatite phase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486CrossRef Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486CrossRef
2.
Zurück zum Zitat Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2:231CrossRef Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2:231CrossRef
3.
Zurück zum Zitat Hoppe A, Mourino V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci 1:254–256CrossRef Hoppe A, Mourino V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci 1:254–256CrossRef
4.
Zurück zum Zitat Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRef Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRef
5.
Zurück zum Zitat Thompson KH, Orvig C (2003) Boon and bane of metal ions in medicine. Science 300:936–939CrossRef Thompson KH, Orvig C (2003) Boon and bane of metal ions in medicine. Science 300:936–939CrossRef
6.
Zurück zum Zitat Henstock JR, Canham LT, Anderson SI (2015) Silicon: the evolution of its use in biomaterials. Acta Biomater 11:17–26CrossRef Henstock JR, Canham LT, Anderson SI (2015) Silicon: the evolution of its use in biomaterials. Acta Biomater 11:17–26CrossRef
7.
Zurück zum Zitat Mladenović Ž, Johansson A, Willman B, Shahabi K, Björn E, Ransjö M (2014) Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater 10:406–418CrossRef Mladenović Ž, Johansson A, Willman B, Shahabi K, Björn E, Ransjö M (2014) Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater 10:406–418CrossRef
8.
Zurück zum Zitat Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9:6981–6991CrossRef Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9:6981–6991CrossRef
9.
Zurück zum Zitat Reffitt DM, Ogston N, Jugdaohsingh R et al (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135CrossRef Reffitt DM, Ogston N, Jugdaohsingh R et al (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135CrossRef
10.
Zurück zum Zitat Julien M, Magne D, Masson M et al (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148:530–537CrossRef Julien M, Magne D, Masson M et al (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148:530–537CrossRef
11.
Zurück zum Zitat Julien M, Khoshniat S, Lacreusette A et al (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868CrossRef Julien M, Khoshniat S, Lacreusette A et al (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868CrossRef
12.
Zurück zum Zitat Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576CrossRef Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576CrossRef
13.
Zurück zum Zitat Valerio P, Pereira MM, Goes AM, Leite MF (2009) Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 4:045011CrossRef Valerio P, Pereira MM, Goes AM, Leite MF (2009) Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 4:045011CrossRef
14.
Zurück zum Zitat Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRef Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRef
15.
Zurück zum Zitat Marie PJ (2007) Strontium ranelate: new insights into its dual mode of action. Bone 40:S5–S8CrossRef Marie PJ (2007) Strontium ranelate: new insights into its dual mode of action. Bone 40:S5–S8CrossRef
16.
Zurück zum Zitat Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol 74:438–447CrossRef Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol 74:438–447CrossRef
17.
Zurück zum Zitat Barbara A, Delannoy P, Denis BG, Marie PJ (2004) Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53:532–537CrossRef Barbara A, Delannoy P, Denis BG, Marie PJ (2004) Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53:532–537CrossRef
18.
Zurück zum Zitat Autefage H, Gentleman E, Littmann E, Hedegaard MAB, Von Erlach T, O’Donnell M, Burden FR, Winkler DA, Stevens MM (2015) Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. PNAS 112:4280–4285CrossRef Autefage H, Gentleman E, Littmann E, Hedegaard MAB, Von Erlach T, O’Donnell M, Burden FR, Winkler DA, Stevens MM (2015) Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. PNAS 112:4280–4285CrossRef
19.
Zurück zum Zitat Takahashi N, Sasaki T, Tsouderos Y, Suda T (2003) S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18:1082–1087CrossRef Takahashi N, Sasaki T, Tsouderos Y, Suda T (2003) S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18:1082–1087CrossRef
20.
Zurück zum Zitat Lao J, Jallot E, Nedelec J-M (2008) Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater 20:4969–4973CrossRef Lao J, Jallot E, Nedelec J-M (2008) Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater 20:4969–4973CrossRef
21.
Zurück zum Zitat Lao J, Nedelec JM, Moretto P, Jallot E (2008) Micro-PIXE–RBS methods highlighting the influence of phosphorus on the in vitro bioactivity of sol–gel derived glass particles in the SiO2–CaO–P2O5 system. Nucl. Instrum. Meth. B 66:2412–2417CrossRef Lao J, Nedelec JM, Moretto P, Jallot E (2008) Micro-PIXE–RBS methods highlighting the influence of phosphorus on the in vitro bioactivity of sol–gel derived glass particles in the SiO2–CaO–P2O5 system. Nucl. Instrum. Meth. B 66:2412–2417CrossRef
22.
Zurück zum Zitat Kim IY, Towler MR, Wren A, Ohtsuki C (2009) Fabrication of spherical CaO–SrO–ZnO–SiO2 particles by sol–gel processing. J Mater Sci Mater Med 20:2267–2273CrossRef Kim IY, Towler MR, Wren A, Ohtsuki C (2009) Fabrication of spherical CaO–SrO–ZnO–SiO2 particles by sol–gel processing. J Mater Sci Mater Med 20:2267–2273CrossRef
23.
Zurück zum Zitat Isaac J, Nohra J, Lao J et al (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater 21:130–143CrossRef Isaac J, Nohra J, Lao J et al (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater 21:130–143CrossRef
24.
Zurück zum Zitat Bonhomme C, Gervais C, Folliet N et al (2012) 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. J Am Chem Soc 134:12611–12628CrossRef Bonhomme C, Gervais C, Folliet N et al (2012) 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. J Am Chem Soc 134:12611–12628CrossRef
25.
Zurück zum Zitat Lao J, Nedelec JM, Jallot E (2009) New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J Mater Chem 19:2940–2949CrossRef Lao J, Nedelec JM, Jallot E (2009) New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J Mater Chem 19:2940–2949CrossRef
26.
Zurück zum Zitat Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng C 30:383–390CrossRef Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng C 30:383–390CrossRef
27.
Zurück zum Zitat Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N (2011) Composition-structure-property relationships of the CaO–MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem 21:9208–9218CrossRef Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N (2011) Composition-structure-property relationships of the CaO–MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem 21:9208–9218CrossRef
28.
Zurück zum Zitat Taherkhani S, Moztarzadeh F, Mozafari M, Lotfibakhshaiesh N (2012) Sol–gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1-x)CaO–xSrO–P2O5 dried-gel. J Non–Cryst Solids 358:342–348CrossRef Taherkhani S, Moztarzadeh F, Mozafari M, Lotfibakhshaiesh N (2012) Sol–gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1-x)CaO–xSrO–P2O5 dried-gel. J Non–Cryst Solids 358:342–348CrossRef
29.
Zurück zum Zitat Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8:3805–3815CrossRef Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8:3805–3815CrossRef
30.
Zurück zum Zitat Zhang Y, Wei L, Chang J et al (2013) Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J Mater Chem B 1:5711–5722CrossRef Zhang Y, Wei L, Chang J et al (2013) Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J Mater Chem B 1:5711–5722CrossRef
31.
Zurück zum Zitat Dziadek M, Zagrajczuk B, Menaszek E, Wegrzynowicz A, Pawlik J, Cholewa-Kowalska K (2016) Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceram Int 42:5842–5857CrossRef Dziadek M, Zagrajczuk B, Menaszek E, Wegrzynowicz A, Pawlik J, Cholewa-Kowalska K (2016) Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceram Int 42:5842–5857CrossRef
32.
Zurück zum Zitat Taherkhani S, Moztarzadeh F (2016) Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder. J Sol–Gel Sci Technol 78:539–549CrossRef Taherkhani S, Moztarzadeh F (2016) Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder. J Sol–Gel Sci Technol 78:539–549CrossRef
33.
Zurück zum Zitat Saravanapavan P, Hench LL (2003) Mesoporous calcium silicate glasses. I Synthesis. J Non–Cryst Solids 318:1–13CrossRef Saravanapavan P, Hench LL (2003) Mesoporous calcium silicate glasses. I Synthesis. J Non–Cryst Solids 318:1–13CrossRef
34.
Zurück zum Zitat Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRef Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRef
35.
Zurück zum Zitat Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734CrossRef
36.
Zurück zum Zitat Aguiar H, Serra J, González P, León B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non–Cryst Solids 355:475–480CrossRef Aguiar H, Serra J, González P, León B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non–Cryst Solids 355:475–480CrossRef
37.
Zurück zum Zitat Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740CrossRef Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740CrossRef
38.
Zurück zum Zitat Mozafari M, Moztarzadeh F, Rabiee M et al (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36:2431–2439CrossRef Mozafari M, Moztarzadeh F, Rabiee M et al (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36:2431–2439CrossRef
39.
Zurück zum Zitat Irish DE, Walrafen GE (1967) Raman and infrared spectral studies of aqueous calcium nitrate solutions. J Chem Phys 46:378–384CrossRef Irish DE, Walrafen GE (1967) Raman and infrared spectral studies of aqueous calcium nitrate solutions. J Chem Phys 46:378–384CrossRef
40.
Zurück zum Zitat Goebbert DJ, Garand E, Wende T et al (2009) Infrared spectroscopy of the microhydrated nitrate ions NO3 −(H2O)1−6. J Phys Chem A 113:7584–7592CrossRef Goebbert DJ, Garand E, Wende T et al (2009) Infrared spectroscopy of the microhydrated nitrate ions NO3 (H2O)1−6. J Phys Chem A 113:7584–7592CrossRef
41.
Zurück zum Zitat Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282CrossRef Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282CrossRef
42.
Zurück zum Zitat Yamane M, Kojima T (1981) Low temperature synthesis of non-crystalline solids of the system SrO–SiO2. J Non-Cryst Solids 44:181–190CrossRef Yamane M, Kojima T (1981) Low temperature synthesis of non-crystalline solids of the system SrO–SiO2. J Non-Cryst Solids 44:181–190CrossRef
43.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego
44.
Zurück zum Zitat Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A: physicochem Eng. Aspects 173:1–38CrossRef Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A: physicochem Eng. Aspects 173:1–38CrossRef
45.
Zurück zum Zitat Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 61:301–311CrossRef Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 61:301–311CrossRef
46.
Zurück zum Zitat Paluszkiewicz C, Blażewicz M, Podporska J, Gumuła T (2008) Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies. Vib Spectrosc 48:263–268CrossRef Paluszkiewicz C, Blażewicz M, Podporska J, Gumuła T (2008) Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies. Vib Spectrosc 48:263–268CrossRef
47.
Zurück zum Zitat González B, Colilla M, Vallet-Regí M (2013) Design of in vitro bioactive hybrid materials from the first generation of amine dendrimers as nanobuilding blocks. Chem Eur J 19:4883–4895CrossRef González B, Colilla M, Vallet-Regí M (2013) Design of in vitro bioactive hybrid materials from the first generation of amine dendrimers as nanobuilding blocks. Chem Eur J 19:4883–4895CrossRef
48.
Zurück zum Zitat Maçon ALB, Jacquemin M, Page SJ et al (2017) Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. J Sol–gel Sci Technol 81(1):84–94CrossRef Maçon ALB, Jacquemin M, Page SJ et al (2017) Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. J Sol–gel Sci Technol 81(1):84–94CrossRef
49.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
50.
Zurück zum Zitat Hesaraki S, Alizadeh M, Nazarian H, Sharifi D (2010) Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J Mater Sci Mater Med 21:695–705CrossRef Hesaraki S, Alizadeh M, Nazarian H, Sharifi D (2010) Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J Mater Sci Mater Med 21:695–705CrossRef
51.
Zurück zum Zitat Shahrabi S, Hesaraki S, Moemeni S, Khorami M (2011) Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions. Ceram Int 37:2737–2746CrossRef Shahrabi S, Hesaraki S, Moemeni S, Khorami M (2011) Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions. Ceram Int 37:2737–2746CrossRef
52.
Zurück zum Zitat Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interface 9:880–889CrossRef Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interface 9:880–889CrossRef
53.
Zurück zum Zitat Padilla S, Román J, Carenas A, Vallet-Reg M (2005) The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials 26:475–483CrossRef Padilla S, Román J, Carenas A, Vallet-Reg M (2005) The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials 26:475–483CrossRef
Metadaten
Titel
Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses
verfasst von
Anthony L. B. Maçon
Sungho Lee
Gowsihan Poologasundarampillai
Toshihiro Kasuga
Julian R. Jones
Publikationsdatum
22.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0869-0

Weitere Artikel der Ausgabe 15/2017

Journal of Materials Science 15/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.