Skip to main content
Erschienen in: Rare Metals 4/2017

11.03.2017

Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method

verfasst von: Shuang Li, Yue Yang, Ming Xie, Qin Zhang

Erschienen in: Rare Metals | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spherical cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries was synthesized by hydroxide co-precipitation method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements were carried out to characterize prepared LiNi0.5Mn1.5O4 cathode material. SEM images show that the LiNi0.5Mn1.5O4 cathode material is constituted by micro-sized spherical particles (with a diameter of around 8 μm). XRD patterns reveal that the structure of prepared LiNi0.5Mn1.5O4 cathode material belongs to Fd3m space group. Electrochemical tests at 25 °C show that the LiNi0.5Mn1.5O4 cathode material prepared after annealing at 600 °C has the best electrochemical performances. The initial discharge capacity of prepared cathode material delivers 113.5 mAh·g−1 at 1C rate in the range of 3.50–4.95 V, and the sample retains 96.2% (1.0C) of the initial capacity after 50 cycles. Under different rates with a cutoff voltage range of 3.50–4.95 V at 25 °C, the discharge capacities of obtained cathode material can be kept at about 145.0 (0.1C), 126.8 (0.5C), 113.5 (1.0C) and 112.4 mAh·g−1 (2.0C), the corresponding initial coulomb efficiencies retain above 95.2% (0.1C), 95.0% (0.5C), 92.5% (1.0C) and 94.8% (2.0C), respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Wang J, Yao XY, Zhou XF, Liu ZP. Synthesis and electrochemical properties of layered lithium transition metal oxides. J Mater Chem. 2011;21(8):2544.CrossRef Wang J, Yao XY, Zhou XF, Liu ZP. Synthesis and electrochemical properties of layered lithium transition metal oxides. J Mater Chem. 2011;21(8):2544.CrossRef
[2]
Zurück zum Zitat Yang SY, Wang XY, Yang XK, Bai YS, Liu ZL, Shu HB, Wei QL. Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2. Electrochim Acta. 2012;66(4):88.CrossRef Yang SY, Wang XY, Yang XK, Bai YS, Liu ZL, Shu HB, Wei QL. Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2. Electrochim Acta. 2012;66(4):88.CrossRef
[3]
Zurück zum Zitat Gu YJ, Li Y, Fu Y, Zang QF, Liu HQ, Ding JX, Wang YM, Wang HF, Ni JF. LiNi0.5Mn1.5O4 synthesized through ammonia-mediated carbonate precipitation. Electrochim Acta. 2015;176(125):1029.CrossRef Gu YJ, Li Y, Fu Y, Zang QF, Liu HQ, Ding JX, Wang YM, Wang HF, Ni JF. LiNi0.5Mn1.5O4 synthesized through ammonia-mediated carbonate precipitation. Electrochim Acta. 2015;176(125):1029.CrossRef
[4]
Zurück zum Zitat Mo MY, Hu KS, Hong XT, Guo JS, Ye CC, Li AJ. Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5 V lithium ion batteries. Appl Surf Sci. 2014;290(3):412.CrossRef Mo MY, Hu KS, Hong XT, Guo JS, Ye CC, Li AJ. Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5 V lithium ion batteries. Appl Surf Sci. 2014;290(3):412.CrossRef
[5]
Zurück zum Zitat Hu M, Pang XL, Zhou Z. Recent progress in high-voltage lithium ion batteries. J Power Sources. 2013;237(3):229.CrossRef Hu M, Pang XL, Zhou Z. Recent progress in high-voltage lithium ion batteries. J Power Sources. 2013;237(3):229.CrossRef
[6]
Zurück zum Zitat Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met. 2016;35(4):309.CrossRef Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met. 2016;35(4):309.CrossRef
[7]
Zurück zum Zitat Ren L, Li XE, Wang FF, Han Y. Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met. 2015;34(10):731.CrossRef Ren L, Li XE, Wang FF, Han Y. Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met. 2015;34(10):731.CrossRef
[8]
Zurück zum Zitat Liu DL, Du LC, Liu YF, Chen YB. Effects of Mn-precursor on performances of LiMn2O4 cathode material for lithium ion battery. Rare Met Mater Eng. 2014;43(11):2584.CrossRef Liu DL, Du LC, Liu YF, Chen YB. Effects of Mn-precursor on performances of LiMn2O4 cathode material for lithium ion battery. Rare Met Mater Eng. 2014;43(11):2584.CrossRef
[9]
Zurück zum Zitat Hu M, Tian Y, Su LW, Wei JP, Zhou Z. Preparation and Ni-doping effect of nanosized truncated octahedral LiCoMnO4 as cathode materials for 5 V Li-ion batteries. ACS Appl Mater Interfaces. 2013;5(22):12185.CrossRef Hu M, Tian Y, Su LW, Wei JP, Zhou Z. Preparation and Ni-doping effect of nanosized truncated octahedral LiCoMnO4 as cathode materials for 5 V Li-ion batteries. ACS Appl Mater Interfaces. 2013;5(22):12185.CrossRef
[10]
Zurück zum Zitat Rodriguez-Caravjal J, Rousse G, Masquelier C, Hervieeu M. Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Phys Rev Lett. 1998;81(21–23):4660.CrossRef Rodriguez-Caravjal J, Rousse G, Masquelier C, Hervieeu M. Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Phys Rev Lett. 1998;81(21–23):4660.CrossRef
[11]
Zurück zum Zitat Huang HT, Vincent CA, Bruce PG. Capacity loss of lithium manganese oxide spinel in LiPF6/ethylene carbonate-dimethyl carbonate electrolytes. J Electrochem Soc. 1999;146(2):481.CrossRef Huang HT, Vincent CA, Bruce PG. Capacity loss of lithium manganese oxide spinel in LiPF6/ethylene carbonate-dimethyl carbonate electrolytes. J Electrochem Soc. 1999;146(2):481.CrossRef
[12]
Zurück zum Zitat Zhang MH, Liu YZ, Xia YG, Qi B, Wang J, Liu ZP. Simplified co-precipitation synthesis of spinel LiNi0.5Mn1.5O4 with improved physical and electrochemical performance. J Alloys Compd. 2014;598(12):73. Zhang MH, Liu YZ, Xia YG, Qi B, Wang J, Liu ZP. Simplified co-precipitation synthesis of spinel LiNi0.5Mn1.5O4 with improved physical and electrochemical performance. J Alloys Compd. 2014;598(12):73.
[13]
Zurück zum Zitat Fang X, Lu Y, Ding N, Feng XY, Liu C, Chen CH. Electrochemical properties of nano- and micro-sized LiNi0.5Mn1.5O4 synthesized via thermal decomposition of a ternary eutectic Li–Ni–Mn acetate. Electrochim Acta. 2010;55(3):832.CrossRef Fang X, Lu Y, Ding N, Feng XY, Liu C, Chen CH. Electrochemical properties of nano- and micro-sized LiNi0.5Mn1.5O4 synthesized via thermal decomposition of a ternary eutectic Li–Ni–Mn acetate. Electrochim Acta. 2010;55(3):832.CrossRef
[14]
Zurück zum Zitat Wang HL, Xia H, Lai MO, Lu L. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-dopping. Electrochem Commun. 2009;11(7):1539.CrossRef Wang HL, Xia H, Lai MO, Lu L. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-dopping. Electrochem Commun. 2009;11(7):1539.CrossRef
[15]
Zurück zum Zitat Wu P, Zheng XL, Zhou C, Gu GF, Tong DG. Improved electrochemical performance of LiNi0.5−x Rh x Mn1.5O4 cathode materials for 5 V lithium ion batteries via Rh-doping. Mater Chem Phys. 2013;138(2–3):716.CrossRef Wu P, Zheng XL, Zhou C, Gu GF, Tong DG. Improved electrochemical performance of LiNi0.5−x Rh x Mn1.5O4 cathode materials for 5 V lithium ion batteries via Rh-doping. Mater Chem Phys. 2013;138(2–3):716.CrossRef
[16]
Zurück zum Zitat Yang Z, Jiang Y, Kim JH, Wu Y, Li GL, Huang YH. The LiZnxNi0.5−xMn1.5O4 spinel with improved high voltage stability for Li-ion batteries. Electrochim Acta. 2014;117(4):76.CrossRef Yang Z, Jiang Y, Kim JH, Wu Y, Li GL, Huang YH. The LiZnxNi0.5−xMn1.5O4 spinel with improved high voltage stability for Li-ion batteries. Electrochim Acta. 2014;117(4):76.CrossRef
[17]
Zurück zum Zitat Hu M, Tian Y, Wei JP, Wang DG, Zhou Z. Porous hollow LiCoMnO4 microspheres as cathode materials for 5 V lithium ion batteries. J Power Sources. 2014;247(2):794.CrossRef Hu M, Tian Y, Wei JP, Wang DG, Zhou Z. Porous hollow LiCoMnO4 microspheres as cathode materials for 5 V lithium ion batteries. J Power Sources. 2014;247(2):794.CrossRef
[18]
Zurück zum Zitat Mo MY, Guo JS, Ye CC, Chen HY. Preparation of LiNi0.5Mn1.5O4 for high cathode materials by a gelatin-assisted solid state method. J South China Univ Technol Nat Sci Ed. 2015;47(4):69. Mo MY, Guo JS, Ye CC, Chen HY. Preparation of LiNi0.5Mn1.5O4 for high cathode materials by a gelatin-assisted solid state method. J South China Univ Technol Nat Sci Ed. 2015;47(4):69.
[19]
Zurück zum Zitat Gao ZG, Sun K, Cong LN, Zhao Q, Wang RS, Xie HM, Sun LQ, Su ZM. High performance 5 V LiNi0.5Mn1.5O4 spinel cathode materials synthesized by an improved solid-state method. J Alloys Compd. 2016;654(37):257.CrossRef Gao ZG, Sun K, Cong LN, Zhao Q, Wang RS, Xie HM, Sun LQ, Su ZM. High performance 5 V LiNi0.5Mn1.5O4 spinel cathode materials synthesized by an improved solid-state method. J Alloys Compd. 2016;654(37):257.CrossRef
[20]
Zurück zum Zitat Liu YZ, Zhang MH, Xia YG, Qiu B, Liu ZP, Li X. One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources. 2014;256(12):66.CrossRef Liu YZ, Zhang MH, Xia YG, Qiu B, Liu ZP, Li X. One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources. 2014;256(12):66.CrossRef
[21]
Zurück zum Zitat Wu HM, Belharouak I, Abouinrane A, Sun YK, Amine K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO for lithium-ion batteries. J Power Sources. 2010;195(9):2909.CrossRef Wu HM, Belharouak I, Abouinrane A, Sun YK, Amine K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO for lithium-ion batteries. J Power Sources. 2010;195(9):2909.CrossRef
[22]
Zurück zum Zitat Yang TY, Sun KN, Lei ZY, Zhang NQ, Lang Y. The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. J Solid State Electrochem. 2011;15(2):391.CrossRef Yang TY, Sun KN, Lei ZY, Zhang NQ, Lang Y. The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. J Solid State Electrochem. 2011;15(2):391.CrossRef
[23]
Zurück zum Zitat Zhang MH, Wang J, Xia YG, Liu ZP. Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. J Alloys Compd. 2012;518(2):68.CrossRef Zhang MH, Wang J, Xia YG, Liu ZP. Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. J Alloys Compd. 2012;518(2):68.CrossRef
[24]
Zurück zum Zitat Zhao QL, Ye NQ, Li L, Yan F. Oxalate coprecipitation process synthesis of 5 V cathode material LiNi0.5Mn1.5O4 and its performance. Rare Met Mater Eng. 2010;39(10):1715.CrossRef Zhao QL, Ye NQ, Li L, Yan F. Oxalate coprecipitation process synthesis of 5 V cathode material LiNi0.5Mn1.5O4 and its performance. Rare Met Mater Eng. 2010;39(10):1715.CrossRef
[25]
Zurück zum Zitat Huang Y, Wang ZX, Li XH, Guo HJ, Wang JX. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries. Trans Nonferrous Met Soc China. 2015;25(7):2253.CrossRef Huang Y, Wang ZX, Li XH, Guo HJ, Wang JX. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries. Trans Nonferrous Met Soc China. 2015;25(7):2253.CrossRef
[26]
Zurück zum Zitat Sun Q, Li XH, Wang ZX, Ji Y. Synthesis and electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans Nonferrous Met Soc China. 2009;19(1):176.CrossRef Sun Q, Li XH, Wang ZX, Ji Y. Synthesis and electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans Nonferrous Met Soc China. 2009;19(1):176.CrossRef
[27]
Zurück zum Zitat Zhong SK, Li W, Li YH, Zou ZG, Tang X. Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials. Trans Nonferrous Met Soc China. 2009;19(6):1499.CrossRef Zhong SK, Li W, Li YH, Zou ZG, Tang X. Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials. Trans Nonferrous Met Soc China. 2009;19(6):1499.CrossRef
[28]
Zurück zum Zitat Yao YL, Liu HC, Li GC, Peng HR, Chen KZ. Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries. Mater Chem Phys. 2014;143(2):867.CrossRef Yao YL, Liu HC, Li GC, Peng HR, Chen KZ. Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries. Mater Chem Phys. 2014;143(2):867.CrossRef
[29]
Zurück zum Zitat Zhan GC, Tang XC, Wang ZM. Preparation of LiCo1/3Ni1/3Mn1/3O2 cathode material by improved co-precipitation method. J Cent South Univ. 2012;43(10):3780. Zhan GC, Tang XC, Wang ZM. Preparation of LiCo1/3Ni1/3Mn1/3O2 cathode material by improved co-precipitation method. J Cent South Univ. 2012;43(10):3780.
[30]
Zurück zum Zitat Yang Y, Xu SM, Weng YQ, Huang GY, Li LY. Preparation and characterization of xLi2MnO3·(1−x) Li(Ni1/3Co1/3Mn1/3)O2(x = 0.2, 0.4, 0.6) cathode materials synthesized by hydroxide co-precipitation method. J Funct Mater. 2013;44(19):2878. Yang Y, Xu SM, Weng YQ, Huang GY, Li LY. Preparation and characterization of xLi2MnO3·(1−x) Li(Ni1/3Co1/3Mn1/3)O2(x = 0.2, 0.4, 0.6) cathode materials synthesized by hydroxide co-precipitation method. J Funct Mater. 2013;44(19):2878.
[31]
Zurück zum Zitat Jeon HJ, Monim SA, Kang CS, Son JT. Synthesis of Lix[Ni0.225Co0.125Mn0.65]O2 as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide co-precipitation method. J Phys Chem Solids. 2013;74(9):1185.CrossRef Jeon HJ, Monim SA, Kang CS, Son JT. Synthesis of Lix[Ni0.225Co0.125Mn0.65]O2 as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide co-precipitation method. J Phys Chem Solids. 2013;74(9):1185.CrossRef
[32]
Zurück zum Zitat Liang LW, Du K, Peng ZD, Cao YB, Duan JG, Jiang JB, Hu GR. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim Acta. 2014;130(1):82.CrossRef Liang LW, Du K, Peng ZD, Cao YB, Duan JG, Jiang JB, Hu GR. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim Acta. 2014;130(1):82.CrossRef
[33]
Zurück zum Zitat Kong X, Sun HY, Wang QB, Yi ZZ, Wang BS, Liu GY. Improvement in the electrochemical properties of LiNi0.5Mn1.5O4 lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis. Ceram Int. 2014;40(8):11611.CrossRef Kong X, Sun HY, Wang QB, Yi ZZ, Wang BS, Liu GY. Improvement in the electrochemical properties of LiNi0.5Mn1.5O4 lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis. Ceram Int. 2014;40(8):11611.CrossRef
[34]
Zurück zum Zitat Zhong QM, Bonadarpour A, Zhang M, Gao Y, Dahn JR. Synthesis and electrochemistry of LiNi x Mn2−x O4. J Electrochem Soc. 1997;144(1):205.CrossRef Zhong QM, Bonadarpour A, Zhang M, Gao Y, Dahn JR. Synthesis and electrochemistry of LiNi x Mn2−x O4. J Electrochem Soc. 1997;144(1):205.CrossRef
[35]
Zurück zum Zitat Myung ST, Komaba S, Kumgai N, Yashiro H, Chung HT, Cho TH. Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochim Acta. 2002;47(15):2543.CrossRef Myung ST, Komaba S, Kumgai N, Yashiro H, Chung HT, Cho TH. Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochim Acta. 2002;47(15):2543.CrossRef
Metadaten
Titel
Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method
verfasst von
Shuang Li
Yue Yang
Ming Xie
Qin Zhang
Publikationsdatum
11.03.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2017
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0859-4

Weitere Artikel der Ausgabe 4/2017

Rare Metals 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.